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Abstract

We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear
systems of equations under two different designs (i.e. a sort of random Fourier design and Gaussian
design). Despite the wide applicability, the theoretical understanding about these two paradigms remains
largely inadequate in the presence of random noise. The current paper makes two contributions by
demonstrating that: (1) a two-stage nonconvex algorithm attains minimax-optimal accuracy within
a logarithmic number of iterations. (2) convex relaxation also achieves minimax-optimal statistical
accuracy vis-à-vis random noise. Both results significantly improve upon the state-of-the-art theoretical
guarantees.
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1 Introduction and motivation
Suppose we are interested in a pair of unknown objects h?,x? ∈ CK and are given a collection of m nonlinear
measurements taking the following form

yj = bHj h
?x?Haj + ξj , 1 ≤ j ≤ m. (1.1)

Here, zH denotes the conjugate transpose of a vector z, {ξj} stands for the additive noise, whereas {aj} and
{bj} are design vectors (or sampling vectors). The aim is to faithfully reconstruct both h? and x? from the
above set of bilinear measurements.1

This problem of solving bilinear systems of equations spans multiple domains in science and engineering,
including but not limited to astronomy, medical imaging, optics, and communication engineering [Campisi
and Egiazarian, 2016, Chan and Wong, 1998, Jefferies and Christou, 1993, Tong et al., 1994, Wang and
Poor, 1998, Wunder et al., 2015]. Particularly worth emphasizing is the application of blind deconvolution
[Ahmed et al., 2013, Kundur and Hatzinakos, 1996, Ling and Strohmer, 2015, Ma et al., 2018], which involves
recovering two unknown signals from their circular convolution. As has been made apparent in the seminal
work Ahmed et al. [2013], deconvolving two signals can be reduced to solving bilinear equations, provided
that the unknown signals lie within some a priori known subspaces; the interested reader is referred to
Ahmed et al. [2013] for details. A variety of approaches have since been put forward for blind deconvolution,
most notable of which are convex relaxation and nonconvex optimization [Ahmed et al., 2013, Huang and
Hand, 2018, Li et al., 2019, Ling and Strohmer, 2017, 2019, Ma et al., 2018]. Despite a large body of prior
work tackling this problem, however, where these algorithms stand vis-à-vis random noise remains unsettled,
which we seek to address in the current paper.

1.1 Convex and nonconvex algorithms
Among various algorithms that have been proposed for blind deconvolution, two paradigms have received
much attention: (1) convex relaxation and (2) nonconvex optimization, both of which can be explained
rather simply. The starting point for both paradigms is a natural least-squares formulation

minimize
h,x∈CK

m∑
j=1

∣∣bHj hxHaj − yj
∣∣2 , (1.2)

which is, unfortunately, highly nonconvex due to the bilinear structure of the sampling mechanism. It then
boils down to how to guarantee a reliable solution despite the intrinsic nonconvexity.

Convex relaxation. In order to tame nonconvexity, a popular strategy is to lift the problem into higher
dimension followed by convex relaxation (namely, representing hxH by a matrix variable Z and then dropping
the rank-1 constraint) [Ahmed et al., 2013, Ling and Strohmer, 2015, 2017]. More concretely, we consider
the following convex program:2

minimize
Z∈CK×K

g (Z) =

m∑
j=1

∣∣bHj Zaj − yj∣∣2 + 2λ ‖Z‖∗ , (1.3)

where λ > 0 denotes the regularization parameter, and ‖Z‖∗ is the nuclear norm of Z (i.e. the sum of
singular values of Z) and is known to be the convex surrogate for the rank function. The rationale is
rather simple: given that we seek to recover a rank-1 matrix Z? = h?x?H, it is common to enforce nuclear
norm penalization to encourage the rank-1 structure. In truth, this comes down to solving a nuclear-norm
regularized least squares problem in the matrix domain CK×K .

1This formulation is reminiscent of the problem of phase retrieval (or solving quadratic systems of equations). But the two
problems turn out to be quite different due to the common assumptions imposed on the design vectors, as we shall elucidate in
Section 3.

2As we shall see shortly, we keep a factor 2 here so as to better connect the convex and nonconvex algorithms; it does not
affect our main theoretical guarantees at all.
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Nonconvex optimization. Another popular paradigm maintains all iterates in the original vector space
(i.e. CK) and attempts solving the above nonconvex formulation or its variants directly. The crucial in-
gredient is to ensure fast and reliable convergence in spite of nonconvexity. While multiple variants of
the nonconvex formulation (1.2) have been studied in the literature (e.g. Charisopoulos et al. [2019, 2021],
Huang and Hand [2018], Li et al. [2019], Ma et al. [2018]), the present paper focuses attention on the following
ridge-regularized least-squares problem:

minimize
h,x∈CK

f (h,x) =

m∑
j=1

∣∣bHj hxHaj − yj
∣∣2 + λ ‖h‖22 + λ ‖x‖22 , (1.4)

with λ > 0 the regularization parameter. This choice of objective function is crucial to the establishment of
our main theorems as can be seen later. Owing to the nonconvexity of (1.4), one needs to also specify which
algorithm to employ in attempt to solve this nonconvex problem. Our focal point is a two-stage optimization
algorithm: it starts with a rough initial guess (h0,x0) computed by means of a spectral method, followed by
Wirtinger gradient descent (GD) that iteratively refines the estimates (to be made precise in (1.6a)). At the
end of each gradient iteration, we further rescale the sizes of the two iterates ht and xt, so as to ensure that
they have identical `2 norm (see (1.6b)). In truth, this balancing step helps stabilize the algorithm, while
facilitating analysis. The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Nonconvex gradient descent with spectral initialization

Input: {yj}1≤j≤m, {aj}1≤j≤m and {bj}1≤j≤m.
Spectral initialization: let σ1 (M), ȟ0 and x̌0 denote respectively the leading singular value, the leading
left and the right singular vectors of

M :=

m∑
j=1

yjbja
H
j . (1.5)

Set h0 =
√
σ1 (M) ȟ0 and x0 =

√
σ1 (M) x̌0.

Gradient updates: for t = 0, 1, . . . , t0 − 1 do[
ht+1/2

xt+1/2

]
=

[
ht

xt

]
− η

[
∇hf (ht,xt)
∇xf (ht,xt)

]
, (1.6a)

[
ht+1

xt+1

]
=


√
‖xt+1/2‖

2

‖ht+1/2‖
2

ht+1/2√
‖ht+1/2‖

2

‖xt+1/2‖
2

xt+1/2

 , (1.6b)

where ∇hf(·) and ∇xf(·) represent the Wirtinger gradient (see Li et al. [2019, Section 3.3] and Ap-
pendix A.2.1) of f(·) w.r.t. h and x, respectively.

1.2 Inadequacy of prior theory
The aforementioned two algorithms have found solid theoretical support under certain randomized sampling
mechanisms. Informally, imagine that the aj ’s and the bj ’s follow standard Gaussian and partial Fourier
designs, respectively, and that each noise component ξj is a zero-mean sub-Gaussian random variable with
variance at most σ2 (more precise descriptions are deferred to Assumption 1). The following performance
guarantees have been established in prior theory.

• Convex relaxation is guaranteed to return an estimate of h?x?H with an Euclidean estimation error
bounded by σ

√
Km (modulo some log factor) [Ahmed et al., 2013, Ling and Strohmer, 2017]. This,

however, exceeds the minimax lower bound (to be presented in Theorem 5) by at least a factor of
√
m.

• In comparison, nonconvex algorithms are capable of achieving nearly minimax optimal statistical accu-
racy, with a computational complexity on the order of mK2 (up to some log factor) [Huang and Hand,
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Table 1: Comparison of our theoretical guarantees of blind deconvolution under Fourier design to prior
theory, where we hide all logarithmic factors. Here, the Euclidean estimation error refers to ‖Zcvx−h?x?H‖F
for the convex case and ‖hncvxx

H
ncvx − h?x?H‖F for the nonconvex case, respectively.

Sample Algorithm Euclidean error Computational
complexity in the noisy case complexity

Ahmed et al. [2013] µ2K convex relaxation σ
√
Km —

Ling and Strohmer [2017] µ2K convex relaxation σ
√
Km —

This paper µ2K convex relaxation σ
√
K —

Li et al. [2019] µ2K nonconvex regularized GD σ
√
K mK2

Huang and Hand [2018] µ2K Riemannian steepest descent σ
√
K mK2

Ma et al. [2018] µ2K nonconvex vanilla GD — mK (noiseless)

This paper µ2K
nonconvex GD

σ
√
K mK(with balancing operations)

2018, Li et al., 2019]. Here, the computational complexity encompasses the cost of spectral initialization
in Algorithm 1 if implemented by power methods [Golub and Van Loan, 2013]. This computational cost,
however, could be an order of K times larger than the cost taken to read the data.

See Table 1 for a more complete summary of existing theoretical results for this scenario.
These prior results, while offering rigorous theoretical underpinnings for the two popular algorithms, lead

to several natural questions:

1. (Improving statistical guarantees) Is the statistical accuracy of convex relaxation inherently suboptimal
when coping with random noise?

2. (Improving computational complexity) Is it possible to further accelerate the nonconvex algorithm without
compromising statistical accuracy?

The present paper is devoted to addressing these two questions. Informally, we aim to demonstrate that
(1) convex relaxation achieves minimax-optimal statistical accuracy in the face of random noise, and (2)
nonconvex optimization converges to a nearly minimax-optimal solution in time proportional to that taken
to read the data.

1.3 Paper organization and notation
The outline of the paper is as follows. Section 2 gives the formal statement of the model assumptions and
presents our main results for two different designs. Section 3 reviews previous literature on blind decon-
volution. Section 4 presents numerical experiments that corroborate our theoretical results. We conclude
the paper in Section 5 by pointing out several future directions. All the proof details are deferred to the
Appendix.

Throughout the paper, we shall often use the vector notation y := [y1, · · · , ym]> and ξ := [ξ1, · · · , ξm]> ∈
Cm. For any vector v and any matrixM , we denote by vH andMH their conjugate transpose, respectively.
The notation ‖v‖2 represents the `2 norm of an vector v, and we let ‖M‖, ‖M‖F and ‖M‖∗ represent the
spectral norm, the Frobenius norm and the nuclear norm ofM , respectively. For a function f(h,x), we use
∇hf(h,x) (resp. ∇xf(h,x)) to denote its Wirtinger gradient (see Li et al. [2019, Section 3.3] for detailed
introduction) of f(·) with respect to h (resp. x). Further, we define ∇f(h,x) = [∇hf(h,x)>,∇xf(h,x)>]>.
For any subspace T , we use T⊥ to denote its orthogonal complement, and PT (M) the Euclidean projection of
a matrix M onto T . Moreover, we adopt f1(m,K) . f2(m,K) or f1(m,K) = O(f2(m,K)) to indicate that
there exists some constant C1 > 0 such that f1(m,K) ≤ Cf2(m,K) holds for all (m,K) that are sufficiently
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large, and use f1(m,K) & f2(m,K) to indicate that f1(m,K) ≥ C2f2(m,K) holds for some constant C > 0
whenever (m,K) are sufficiently large. The notation f1(m,K) � f2(m,K) means that f1(m,K) . f2(m,K)
and f1(m,K) & f2(m,K) hold simultaneously. In our proof, C serves as a universal constant whose value
might change from line to line.

2 Main results
In this section, we present our theoretical guarantees for the above two algorithms for two types of random
designs commonly studied in the blind deconvolution literature.

2.1 Blind deconvolution under random Fourier designs
Model and assumptions. We start by introducing a sort of random Fourier designs motivated by practical
engineering applications (see Ahmed et al. [2013], Li et al. [2019]).

Assumption 1. Let A := [a1,a2, · · · ,am]
H ∈ Cm×K and B := [b1, b2, · · · , bm]

H ∈ Cm×K be matrices
obtained by concatenating the design vectors.

• The entries of A are independently drawn from standard complex Gaussian distributions, namely, aj
i.i.d.∼

N
(
0, 12IK

)
+ iN

(
0, 12IK

)
with i the imaginary unit;

• The design matrix B consists of the first K columns of the unitary discrete Fourier transform (DFT)
matrix F ∈ Cm×m obeying FF H = Im;

• The noise components {ξi} are independent zero-mean sub-Gaussian random variables with sub-Gaussian
norm obeying ‖ξi‖ψ2 ≤ σ (1 ≤ i ≤ m). See Vershynin [2010, Definition 5.7] for the definition of ‖ · ‖ψ2 .

Remark 1. As can be easily verified, we have ‖bj‖2 =
√
K/m (1 ≤ j ≤ m) under this model.

It is worth noting that the Fourier design is largely motivated by the duality relation between convolution
in the time domain and multiplication in the frequency domain, which is closely related to practical scenarios;
see Ahmed et al. [2013] for details. In fact, the model described in Assumption 1 has been the focus of a
number of recent papers including Ahmed et al. [2013], Huang and Hand [2018], Li et al. [2019], Ling and
Strohmer [2016, 2017, 2019], Ma et al. [2018], to name a few.

In addition, as pointed out by prior works Ahmed et al. [2013], Li et al. [2019], Ma et al. [2018], the
following incoherence condition — which captures the interplay between the truth and the measurement
mechanism — plays a crucial role in enabling tractable estimation schemes.

Definition 1 (Incoherence). Define the incoherence parameter µ as the smallest number obeying∣∣bHj h?∣∣ ≤ µ√
K
‖bj‖2 ‖h

?‖2 =
µ√
m
‖h?‖2 , 1 ≤ j ≤ m. (2.1)

Remark 2. Comparing the Cauchy-Schwarz inequality
∣∣bHj h?∣∣ ≤ ‖bj‖2 ‖h?‖2 with (2.1) reveals that µ ≤√

K. It is noteworthy that our theory does not require µ to be small constant; in fact, all of our theoretical
findings allow µ to grow with the problem dimension.

Informally, a small incoherence parameter indicates that the truth is not quite aligned with the sampling
basis. As a concrete example, when h? is randomly generated (i.e. h? ∼ N (0, IK)), it can be easily verified
that the incoherence parameter µ is, with high probability, at most O(

√
logm). In fact, this type of condition

is widely proposed in statistical literature on various problem besides blind deconvolution, such as Candès
and Recht [2009], Chen et al. [2020b], Ma et al. [2018] on matrix completion and Candès et al. [2011],
Chandrasekaran et al. [2011], Chen et al. [2020c] on robust principal component analysis. The important
role of this incoherence parameter will also be confirmed by our numerical simulations momentarily (cf. Figure
3).
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Main theory. We are now positioned to state our main theory for this setting, followed by discussing
the implications of our theory. Towards this end, we begin with the statistical guarantees for the convex
formulation. Denote the minimizer of (1.3) by Zcvx. Then our result is this:

Theorem 1 (Convex relaxation). Set λ = Cλσ
√
K logm for some large enough constant Cλ > 0. Assume

m ≥ Cµ2K log9m and σ

√
K log5m ≤ c

∥∥h?x?H∥∥
F

(2.2)

for some sufficiently large (resp. small) constant C > 0 (resp. c > 0). Then under Assumption 1 and the
incoherence condition (2.1), one has with probability exceeding 1−O

(
m−3 +me−K

)
that∥∥Zcvx − h?x?H

∥∥ ≤ ∥∥Zcvx − h?x?H
∥∥
F
. σ

√
K logm. (2.3)

In addition, the bounds in (2.3) continue to hold if Zcvx is replaced by Zcvx,1 := arg minZ:rank(Z)≤1 ‖Z −Zcvx‖F
(i.e. the best rank-1 approximation of Zcvx).

Remark 3. In (2.2), log9m and log5m appear due to our decoupling arguments. We believe it would be
difficult to get rid of the logarithmic factors completely using the current analyis framework, although it
might be possible to reduce the power of the logarithmic factors slightly by means of more refined analysis.

Our proof for this theorem, whose details are postponed to Appendix B.1, is largely inspired by the idea
of connecting convex and nonconvecx optimization as proposed by Chen et al. [2020b,c] for noisy matrix
completion and robust principal component analysis respectively. Note, however, that implementing this
high-level idea requires drastically different analysis from Chen et al. [2020b,c], primarily due to the absence
of randomness in the highly structured Fourier design matrix B. For instance, in contrast to prior works
that were built upon a “leave-one-out” analysis framework to decouple statistical dependency, simply “leaving
out” one row of B in the blind deconvolution analysis does not lead to immediate statistical benefits due
to the deterministic nature of B. Consequently, considerably more delicate analyses are needed in order to
enable fine-grained statistical analysis.

Next, we turn to theoretical guarantees for the nonconvex algorithm described in Algorithm 1. For
notational convenience, we define

zt :=

[
ht

xt

]
and z? :=

[
h?

x?

]
(2.4)

throughout this paper. Before presenting the results, we make note of an unavoidable scaling ambiguity issue
underlying this model. Given that h? and x? are only identifiable up to global scaling (meaning that one
cannot hope to distinguish (αh?, 1

αx
?) from (h?,x?) given only bilinear measurements), we shall measure

the discrepancy between z? and any point z :=
[

h
x

]
through the following metric:

dist (z, z?) := min
α∈C

√∥∥∥∥ 1

α
h− h?

∥∥∥∥2
2

+ ‖αx− x?‖22. (2.5)

In words, this metric is an extension of the `2 distance modulo global scaling. Our result is this:

Theorem 2 (Nonconvex optimization). Set λ = Cλσ
√
K logm for some large enough constant Cλ > 0.

Take η = cη for some sufficiently small constant cη > 0. Suppose that Assumption 1, the incoherence
condition (2.1) and the condition (2.2) hold. Then with probability at least 1−O

(
m−5 +me−K

)
, the iterates

{ht,xt}0≤t≤t0 of the spectrally initialized nonconvex algorithm (see Algorithm 1) obey

dist
(
z0, z?

)
.

√
µ2K logm

m
‖z?‖2 +

σ
√
K logm

‖h?x?H‖1/2F

, (2.6a)

dist
(
zt, z?

)
≤ ρtdist

(
z0, z?

)
+
C1

(
λ+ σ

√
K logm

)
cρ ‖h?x?H‖1/2F

, (2.6b)
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∥∥ht(xt)H − h?x?H∥∥
F
≤ 2ρtdist

(
z0, z?

)
‖z?‖2 +

2C1

(
λ+ σ

√
K logm

)
cρ

, (2.6c)

simultaneously for all 0 ≤ t ≤ t0 ≤ m20. Here, we take C1 > 0 to be some sufficiently large constant and
0 < ρ = 1− cρη < 1 for some sufficiently small constant cρ > 0.

Remark 4. It is noteworthy that the quantity m−5 in the probability term 1 − O
(
m−5 +me−K

)
in this

theorem can actually be replaced by m−C for any positive integer C.

Informally, this theorem guarantees that the estimation error of the iterates {ht,xt}0≤t≤t0 generated by
Algorithm 1 decays geometrically fast until some error floor is hit. As we shall demonstrate momentarily in
Theorem 5, this error floor matches the minimax-optimal statistical error up to some logarithmic term.

Compared with one of the most relevant papers to us — Ma et al. [2018] — on blind deconvolution under
Fourier designs, this theorem generalizes the noiseless case studied in Ma et al. [2018] to the noisy case. This
generalization actually needs a lot of efforts since it calls for delicate and careful control of the noise effect,
as detailed in the proof in Appendix A.

2.2 Blind deconvolution under Gaussian designs
In addition to the above-mentioned random Fourier design, our results also extend to the scenario under
Gaussian design, as formalized below.

Model and assumptions. Let us describe the model and assumptions of this scenario as follows.

Assumption 2. Let A := [a1,a2, · · · ,am]
H ∈ Cm×K and B := [b1, b2, · · · , bm]

H ∈ Cm×K be matrices
obtained by concatenating the design vectors.

• The entries of A and B are independently drawn from standard complex Gaussian distributions, namely,
aj , bj

i.i.d.∼ N
(
0, 12IK

)
+ iN

(
0, 12IK

)
with i the imaginary unit;

• The noise components {ξi} are independent zero-mean sub-Gaussian random variables with sub-Gaussian
norm obeying ‖ξi‖ψ2 ≤ σ (1 ≤ i ≤ m). See Vershynin [2010, Definition 5.7] for the definition of ‖ · ‖ψ2 .

Akin to Theorems 1 and 2, we consider the loss functions (1.3) and (1.4). The main results under the
Gaussian design are summarized in the following theorems.

Theorem 3 (Convex relaxation). Let λ = Cλσ
√
mK logm for some sufficiently large constant Cλ > 0.

Assume the sample complexity and the noise level satisfy

m ≥ CK log6m and σ

√
K log5m

m
≤ c

∥∥h?x?H∥∥
F

(2.7)

for some sufficiently large (resp. small) constant C > 0 (resp. c > 0). Then

∥∥Zcvx − h?x?H
∥∥ ≤ ∥∥Zcvx − h?x?H

∥∥
F
. σ

√
K logm

m
(2.8)

holds with probability at least 1−O(m−5 +m exp(−c1K)) for some constant c1 > 0. In addition, the bounds
in (2.8) continue to hold if Zcvx is replaced by Zcvx,1 := arg minZ:rank(Z)≤1 ‖Z −Zcvx‖F (i.e. the best rank-1
approximation of Zcvx).

This theorem, which is in parallel to Theorem 1 for Fourier designs, confirms the appealing statistical
guarantees of convex relaxation under Gaussian designs. The minimax optimality of this result will be
discussed in Section 2.3 in detail.
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Theorem 4 (Nonconvex optimization). Set λ = Cλσ
√
mK logm for some large enough constant Cλ > 0.

Take η = cη/m for some sufficiently small constant cη > 0. Suppose that Assumption 2 and Condition (2.7)
hold. Then with probability at least 1−O

(
m−5 +me−K

)
, the iterates {ht,xt}0≤t≤t0 of Algorithm 1 obey

dist
(
z0, z?

)
.

√
K log2m

m
‖z?‖2 + σ

√
K logm

m ‖h?x?H‖F
, (2.9a)

dist
(
zt, z?

)
≤ ρtdist

(
z0, z?

)
+
C11

(
λ+ σ

√
mK logm

)
cρm ‖h?x?H‖1/2F

(2.9b)

∥∥ht(xt)H − h?x?H∥∥
F
≤ 2ρtdist

(
z0, z?

)
‖z?‖2 +

2C11

(
λ+ σ

√
mK logm

)
cρm

(2.9c)

simultaneously for all 0 ≤ t ≤ t0 ≤ m20. Here, we take C11 > 0 to be some sufficiently large constant and
0 < ρ = 1− cρcη < 1 for some sufficiently small constant cρ > 0.

Similar to the Fourier designs studied in Section 2.1, our theory asserts that the estimation error of
{ht,xt}0≤t≤t0 produced by Algorithm 1 decreases geometrically fast before reaching an error floor on the
order of the minimax-optimal statistical limit modulo some logarithmic factor (cf. Theorem 5).

2.3 Insights
The above theorems strengthen our understanding about the performance of both convex and nonconvex
algorithms in the presence of random noise. In what follows, we elaborate on the tightness of our results as
well as other important algorithmic implications.

• Minimax optimality of both convex relaxation and nonconvex optimization. Theorems 1-2 (resp. Theorems
3-4) reveal that both convex and nonconvex optimization estimate h?x?H to within an Euclidean error
at most σ

√
K (resp. σ

√
mK) up to some log factor for random Fourier design (resp. Gaussian design),

provided that the regularization parameter is taken to be λ � σ
√
K logm (resp. λ � σ

√
mK logm). This

closes the gap between the statistical guarantees for convex and nonconvex optimization, confirming that
convex relaxation is no less statistically efficient than nonconvex optimization. Further, in order to assess
the statistical optimality of our results, it is instrumental to understand the statistical limit one can hope
for. This is provided in the following claim, whose proof is postponed to Appendix E.

Theorem 5. Suppose that the noise components obey ξj
i.i.d.∼ N (0, σ2/2) + iN (0, σ2/2). Define

M? :=
{
Z = hxH

∣∣h,x ∈ CK
}
.

Then under Assumption 1, there exists some universal constant c(1)lb > 0 such that, with probability
exceeding 1−O(K−10),

inf
Ẑ

sup
Z?∈M?

E
[∥∥Ẑ −Z?∥∥2

F
| A
]
≥ c(1)lb

σ2K

logm
, (2.10)

where the infimum is taken over all estimator Ẑ. Furthermore, under Assumption 2, there exists another
universal constant c(2)lb > 0 such that

inf
Ẑ

sup
Z?∈M?

E
[∥∥Ẑ −Z?∥∥2

F
| A,B

]
≥ c(2)lb

σ2K

m logm
(2.11)

holds with probability exceeding 1−O(K−10).

Encouragingly, the minimax lower bound (2.10) (resp. (2.11)) matches the statistical error bounds in
Theorems 1-2 (resp. Theorems 3-4) up to some logarithmic factor, thus confirming the near minimaxity
of both convex relaxation and nonconvex optimization for blind deconvolution under both designs.
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• Fast convergence of nonconvex algorithms. From the computational perspective, Theorem 2 guarantees
linear convergence (or geometric convergence) of the nonconvex algorithm with a contraction rate ρ.
Given that 1− ρ is a constant bounded away from 1 (as long as the stepsize is taken to be a sufficiently
small constant), the iteration complexity of the algorithm scales at most logarithmically with the model
parameters. As a result, the total computational complexity is proportional to the per-iteration cost
O(mK) (up to some log factor), which scales nearly linearly with the time taken to read the data.
Compared with past work on nonconvex algorithms [Huang and Hand, 2018, Li et al., 2019], our theory
reveals considerably faster convergence and hence improved computational cost, without compromising
statistical efficiency. A key enabler of the improved theory lies in fine-grained understanding of the part
of optimization lanscape visited by the nonconvex algorithm, thus allowing for the use of more aggressive
constant step sizes instead of diminishing step sizes. See Table 1 for details.

The careful reader might immediately remark that the validity of the above results requires the assumptions
(2.2) on both the sample size and the noise level. Fortunately, a closer inspection of these conditions reveals
the broad applicability of these conditions.

• Sample complexity. The sample size requirement in our theory of blind deconvolution under Fourier
design (resp. Gaussian design), as stated in Condition (2.2) (resp. Condition (2.7)), scales as

m & Kpoly log(m),

which matches the information-theoretical lower limit even in the absence of noise (modulo some loga-
rithmic factor) as proved in Kech and Krahmer [2017] (resp. Cai et al. [2015]).

• Signal-to-noise ratio (SNR). The noise level required for our theory to work under Fourier design (see
Condition (2.2)) is given by σ

√
K log5m .

∥∥h?x?H∥∥
F
. If we define the sample-wise signal-to-noise ratio

as follows

SNR :=
1
m

∑m
k=1 E

[∣∣bHkh?x?Ha∣∣2]
σ2

, (2.12)

then our noise requirement can be equivalently phrased as

SNR =
‖h?‖22‖x?‖22

mσ2
&
K log5m

m
,

where the right-hand side of the above relation is vanishingly small in light of our sample complexity
constraint m & µ2K log9m. In other words, our theory works even in the low-SNR regime. Furthermore,

for the Gaussian design, the noise level required in our theory is σ
√
K log5m/m .

∥∥h?x?H∥∥
F
. We can

introduce the following SNR that allows us to rewrite this requirement as

SNR =
1
m

∑m
k=1 E

[∣∣bHkh?x?Ha∣∣2]
σ2

=
‖h?‖22‖x?‖22

σ2
&
K log5m

m
,

which resembles the one for Fourier designs.

3 Prior art
Before embarking on our discussion on the prior art for blind deconvolution, it is noteworthy that the
model (1.1) might remind readers of the famous problem of phase retrieval [Candes et al., 2013, Chi et al.,
2019, Shechtman et al., 2015], which is concerned with solving random quadratic systems of equations and
clearly related to the problem of solving bilinear systems. Despite the similarity between these two problems
at first glance, the majority of prior phase retrieval theory focuses on either i.i.d. Gaussian designs or
randomized coded diffraction patterns, which are drastically different from the kind of random Fourier designs
commonly assumed in blind deconvolution. In fact, the presence of Fourier designs in blind deconvolution
is a consequence of the duality relation between convolution in the time domain and multiplication in the
frequency domain [Ahmed et al., 2013, Li et al., 2019]. The deterministic nature of the Fourier design matrix
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B under the Fourier model, however, presents a substantial challenge in the analysis of both convex and
nonconvex optimization algorithms; in contrast, the Gaussian design matrix in prior phase retrieval theory
is assumed to be highly random, which remarkably simplifies analysis.

We now turn attention to the blind deconvolution literature. As mentioned previously, recent years have
witnessed much progress towards understanding convex and nonconvex optimization for solving bilinear
systems of equations. First, we give a brief review on previous literature of blind deconvolution under
Fourier design. Regarding the convex programming approach, Ahmed et al. [2013] was the first to apply
the lifting idea to transform bilinear system of equations into linear measurements about a rank-one matrix
— an idea that has proved effective in a number of nonconvex problems [Candes et al., 2013, Chen and
Chi, 2014, Chen et al., 2014, Chi, 2016, Goemans and Williamson, 1994, Oymak et al., 2015, Shechtman
et al., 2014, Tang et al., 2013, Waldspurger et al., 2015]. Focusing on convex relaxing in the lifted domain,
Ahmed et al. [2013] showed that exact recovery is possible from a near-optimal number of measurements
in the noiseless case, and developed the first statistical guarantees for the noisy case (which are, as alluded
to previously, highly suboptimal). Several other works have also been devoted to understanding convex
relaxation under possibly different assumptions. Another paper Aghasi et al. [2019] proposed an effective
convex algorithm for bilinear inversion, assuming that the signs of the signals are known a priori. Moving
beyond blind deconvolution, the convex approach has been extended to accommodate the blind demixing
problem [Jung et al., 2017, Ling and Strohmer, 2017], which is more general than blind deconvolution.

minimize
Z∈CK×K

‖Z‖∗ subject to y = A (Z) .

Another line of works has focused on the development of fast nonconvex algorithms [Charisopoulos et al.,
2019, 2021, Huang and Hand, 2018, Lee et al., 2018, Li et al., 2019, Ling and Strohmer, 2019, Ma et al., 2018],
which was largely motivated by recent advances in efficient nonconvex optimization for tackling statistical
estimation problems [Cai et al., 2021b, Candes et al., 2015, Charisopoulos et al., 2021, Chen and Candès,
2017, Chen and Wainwright, 2015, Duchi and Ruan, 2019, Jain et al., 2013, Keshavan et al., 2009, Ma et al.,
2019, Qu et al., 2017, Sun and Luo, 2016, Wang et al., 2017a,b, Zhang et al., 2016, Zheng and Lafferty, 2016]
(see Chi et al. [2019] for an overview). Li et al. [2019] proposed a feasible nonconvex recipe by attempting to
optimize a regularized squared loss (which includes extra penalty term to promote incoherence), and showed
that in conjunction with proper initialization, nonconvex gradient descent converges to the ground truth
in the absence of noise. Another work Huang and Hand [2018] proposed a Riemannian steepest descent
method by exploiting the quotient structure, which is also guaranteed to work in the noise-free setting with
nearly minimal sample complexity. Further, Dong and Shi [2018], Ling and Strohmer [2019] extended the
nonconvex paradigm to accommodate the blind demixing problem, which subsumes blind deconvolution a
special case.

Going beyond algorithm designs, the past works Kech and Krahmer [2017], Li et al. [2015, 2016] investi-
gated how many samples are needed to ensure the identifiability of blind deconvolution under the subspace
model. Furthermore, it is worth noting that another line of recent works Lee et al. [2016], Li and Bresler
[2019], Qu et al. [2019], Shi and Chi [2021], Wang and Chi [2016], Zhang et al. [2017, 2019, 2020] studied a
different yet fundamentally important model of blind deconvolution, assuming that one of the two signals is
sparse instead of lying within a known subspace. These are, however, beyond the scope of the current paper.

In addition, as far as we know, previous works on blind deconvolution under Gaussian design is not
as extensive as the case with Fourier designs, the latter of which is closer to practical blind deconvolution
applications. Among the most relevant works: Cai et al. [2015] proposed a constrained convex optimization
problem under the same setting as Assumption 2 and establishes that the estimation error is bounded by
σmin{K

√
logm/m +

√
K/m, 1}, which is on the same order (up to logarithmic factors) as our bound in

Theorem 3 when m � K logm and matches the minimax optimal estimation error lower bound; Zhong
et al. [2015] studied the noiseless case in terms of both convex and nonconvex formulations; Charisopoulos
et al. [2019] analyzed the nonsmooth nonconvex formulation of the problem for bilinear measurements with
corruption frequency less than 1/2, and proved that the subgradient algorithms proposed there converges
linearly, while the specific prox-linear method converges quadratically albeit with higher per-iteration cost.
Compared with these works, our paper studies the unconstrained version of convex relaxation and establishes
an estimation error upper bound that nearly matches the minimax lower bound. When it comes to nonconvex
formulation, the current paper is, as far as we know, the first to justify the optimality of its estimation
accuracy in the noisy setting.
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Figure 1: Left: blind deconvolution under Fourier design. Right: blind deconvolution under Gaussian design.
Relative estimation errors of both Zcvx and Zncvx and the relative distance between them vs. the noise level
σ. The results are averaged over 20 independent trials.

At the technical level, the pivotal idea of our paper lies in bridging convex and nonconvex estimators,
which is motivated by prior works Chen et al. [2019c, 2020b,c] on matrix completion and robust principal
component analysis. Such crucial connections have been established with the assistance of the leave-one-
out analysis framework, which has already proved effective in analyzing a variety of nonconvex statistical
problems [Cai et al., 2020, 2021a, Chen et al., 2020a, 2019a,b, Ding and Chen, 2020, Dong and Shi, 2018,
El Karoui, 2018, Xu et al., 2019, Zhong and Boumal, 2018].

4 Numerical experiments
In this subsection, we carry out a series of numerical experiments to confirm the validity of our the-
ory. Throughout the experiments, the signals of interest h?, x? ∈ CK are drawn from N

(
0, 1

2K IK
)

+

iN
(
0, 1

2K IK
)
(so that they have approximately unit `2 norm). Under the Assumption 1 (resp. Assump-

tion 2), the stepsize η is set to be 0.05 (resp. 0.05/m), whereas the regularization parameter is taken to
be λ = 5σ

√
K logm (resp. λ = 5σ

√
mK logm). The convex problem is solved by means of the proximal

gradient method [Parikh and Boyd, 2014].
In the first series of experiments, we report the statistical estimation errors of both convex and nonconvex

approaches as the noise level σ varies from 10−6 to 10−3 for blind deconvolution under Fourier design, while
the noise level for blind deconvolution under Gaussian design is from 10−5 to 10−2; here, we set K = 100
and m = 10K. Let Zncvx = hncvxx

H
ncvx be the nonconvex solution and Zcvx be the convex solution. Figure 1

depicts the relative Euclidean estimation errors (‖Zncvx −Z?‖F / ‖Z?‖F and ‖Zcvx −Z?‖F / ‖Z?‖F) vs. the
noise level, where the results are averaged from 20 independent trials. Clearly, both approaches enjoy almost
identical statistical accuracy, thus confirming the optimality of convex relaxation as well. Another interesting
observation revealed by Figure 1 is the closeness of the solutions of these two approaches, which, as we shall
elucidate momentarily, forms the basis of our analysis idea.

In the second series of experiments, we report the numerical convergence of gradient descent (cf. Algorithm
1). We choose K ∈ {30, 100, 300, 1000} and let m = 10K, with the noise level fixed at σ = 10−4. Figure 2
plots the relative Euclidean estimation error

∥∥htxtH − h?x?H∥∥F /
∥∥h?x?H∥∥F vs. the iteration count. As can

be seen from the plots, the nonconvex gradient algorithm studied here converges linearly (in fact, within
around 200-300 iterations) before it hits an error floor. In addition, the relative error of blind deconvolution
under Fourier design increases as the dimension K increases, which is consistent with Theorem 2. While
the relative error of blind deconvolution under Gaussian design remains generally the same across different
choices of K, this can be explained by Theorem 4 since the ratio between m and K is kept to be 10.

In the last series of experiments, we examine the necessity of the incoherence condition (2.1) empirically.
The experiments are conducted with µ2 taking on 10 equidistant values from 3 to 30. For each choice of µ,
h? is generated by first setting the first µ2 entries to be 1 and the others 0 , and then normalizing it to have
unit norm; x? is generated randomly from Gaussian distribution N (0, IK) and then normalized to have unit
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Figure 3: Left: nonconvex problem. Right: convex problem. Sample size m vs. squared incoherence µ2. The
scaled colormap represents the proportion of successful recovery out of 20 random trials.

norm. This way we guarantee that max1≤j≤m |bHj h?| = µ/
√
m. We fix K = 100 and the noise level σ = 10−4

throughout. For each µ2 and m, 20 random trials are conducted. In each trial, we run convex and nonconvex
algorithms until convergence or the maximum number of iterations is reached, and then report the relative
Euclidean error ‖htxtH − h?x?H

∥∥
F
. If the relative error is less than 0.1, the trial is declared as successful.

The proportion of successful recovery for convex and nonconvex problems are plotted in Figure 3, which
suggests that sample complexity m does scale linearly with µ2 for both problems and hence corroborates the
theoretical results provided in Theorems 1 and 2.

5 Discussion
This paper has investigated the effectiveness of both convex relaxation and nonconvex optimization in solving
bilinear systems of equations in the presence of random noise. We have demonstrated that a simple two-stage
nonconvex algorithm solves the problem to optimal statistical accuracy within nearly linear time. Further,
by establishing an intimate connection between convex programming and nonconvex optimization, we have
established — for the first time — optimal statistical guarantees of convex relaxation when applied to blind
deconvolution. Our results are established for two different types of design mechanisms: the random Fourier
design and the Gaussian design. Our results considerably improve upon the state-of-the-art theory for blind
deconvolution, and contribute towards demystifying the efficacy of optimization-based methods in solving
this fundamental nonconvex problem.

Moving forward, the findings of this paper suggest multiple directions that merit further investigations.
For instance, while the current paper adopts a balancing operation in each iteration of the nonconvex
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algorithm (cf. Algorithm 1), it might not be necessary in practice; in fact, numerical experiments suggest
that the size of the scaling parameter |αt| stays close to 1 even without proper balancing. It would be
interesting to investigate whether vanilla GD without rescaling is able to achieve comparable performance.
In addition, the estimation guarantees provided in this paper might serve as a starting point for conducting
uncertainty quantification for noisy blind deconvolution — namely, how to use it to construct valid and short
confidence intervals for the unknowns. Going beyond blind deconvolution, it would be of interest to extend
the current analysis to handle blind demixing — a problem that can be viewed as an extension of blind
deconvolution beyond the rank-one setting [Dong and Shi, 2018, Ling and Strohmer, 2017, 2019]. As can be
expected, existing statistical guarantees for convex programming remain highly suboptimal for noisy blind
demixing, and the analysis developed in the current paper suggests a feasible path towards closing the gap.
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Appendix structure
Appendix A and B analyze the Fourier designs. In Appendix A, we present the analysis of the nonconvex
gradient method and the proof of Theorem 2. Appendix B gives the complete proof of Theorem 1. In addition,
Appendix C and D and provide proofs for the Gaussian designs, while Appendix C proves Theorem 4 and
Appendix D proves Theorem 3. Appendix E justifies two minimax lower bounds in Theorem 5. Appendix
F lists several useful lemmas and their proofs.

A Analysis: Nonconvex gradient method under Fourier design
Since the proof of Theorem 1 is built upon Theorem 2, we shall first present the proof of the nonconvex part.
Without loss of generality, we assume that

‖h?‖2 = ‖x?‖2 = 1 (A.1)

throughout the proof. For the sake of notational convenience, for each iterate (ht,xt) we define the following
alignment parameters

αt := arg min
α∈C

{∥∥ 1
αh

t − h?
∥∥2
2

+
∥∥αxt − x?∥∥2

2

}
, (A.2a)

αt+1/2 := arg min
α∈C

{∥∥∥ 1
αh

t+1/2 − h?
∥∥∥2
2

+
∥∥αxt+1/2 − x?

∥∥2
2

}
, (A.2b)

which lead to the following simple relations

αt+1 =

√∥∥xt+1/2
∥∥
2∥∥ht+1/2
∥∥
2

αt+1/2 and dist
(
zt+1/2, z?

)
= dist

(
zt+1, z?

)
. (A.3)
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With these in place, attention should be directed to the properly rescaled iterate

z̃t+1/2 =
(
h̃t+1/2, x̃t+1/2

)
:=
(

1

αt+1/2
ht+1/2, αt+1/2xt+1/2

)
, (A.4a)

z̃t =
(
h̃t, x̃t

)
:=
(

1

αt
ht, αtxt

)
. (A.4b)

Additionally, we shall also define

ẑt+1/2 = (ĥt+1/2, x̂t+1/2) :=
(

1

αt
ht+1/2, αtxt+1/2

)
(A.5a)

ẑt+1 = (ĥt+1, x̂t+1) :=
(

1

αt
ht+1, αtxt+1

)
(A.5b)

that are rescaled in a different way, which will appear often in the analysis.

A.1 Induction hypotheses
Our analysis is inductive in nature; more concretely, we aim to justify the following set of hypotheses by
induction:

dist
(
zt, z?

)
≤
∥∥ẑt−1/2 − z?∥∥

2
≤ ρdist

(
zt−1, z?

)
+ C1η

(
λ+ σ

√
K logm

)
, (A.6a)

max
1≤l≤m

∣∣aH
l

(
x̃t − x?

)∣∣ ≤ C3

√µ2K log2m

m
+
√

logm
(
λ+ σ

√
K logm

) , (A.6b)

max
1≤l≤m

∣∣bHl h̃t∣∣ ≤ C4

(
µ log2m√

m
+ σ

)
, (A.6c)

where ρ = 1−η/16 and C1, C3, C4 > 0 are some universal constants. Here, the hypothesis (A.6a) is made for
all 0 < t ≤ t0, while the hypotheses (A.6b) and (A.6c) are made for all 0 ≤ t ≤ t0. Clearly, if the hypotheses
(A.6a) can be established, then simple recursion yields

dist
(
zt, z?

)
. ρtdist

(
z0, z?

)
+
C1η

(
λ+ σ

√
K logm

)
1− ρ

= ρtdist
(
z0, z?

)
+
C1

(
λ+ σ

√
K logm

)
cρ

, 0 ≤ t ≤ t0 (A.6d)

as claimed. Moreover, one might naturally wonder why we are in need of the additional hypotheses (A.6b)
and (A.6c) that might seem irrelevant at first glance. As it turns out, these two hypotheses — which
characterize certain incoherence conditions of the iterates w.r.t. the design vectors — play a pivotal role in
the analysis, as they enable some sort of “restricted strong convexity” that proves crucial for guaranteeing
linear convergence.

In addition, the analysis also relies upon the following important properties of the initialization, which
we shall establish momentarily:

dist
(
z0, z?

)
.

√
µ2K logm

m
+ σ

√
K logm, (A.6e)

max
1≤j≤m

∣∣aH
j

(
x̃0 − x?

)∣∣ .
√
µ2K log2m

m
+ σ
√
K logm, (A.6f)

max
1≤l≤m

∣∣bHl h̃0
∣∣ . µ log2m√

m
+ σ, (A.6g)∣∣|α0| − 1

∣∣ ≤ 1/4. (A.6h)

A.2 Preliminaries
Before proceeding to the proof, we gather several preliminary facts that will be useful throughout.
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A.2.1 Wirtinger calculus and notation

Given that this problem concerns complex-valued vectors/matrices, we find it convenient to work with
Wirtinger calculus; see Candes et al. [2015, Section 6] and Ma et al. [2018, Section D.3.1] for a brief intro-
duction. Here, we shall simply record below the expressions for the Wirtinger gradient and the Wirtinger
Hessian w.r.t. the objective function f(·) defined in (1.4):

∇hf (h,x) =

m∑
j=1

(
bHj hx

Haj − yj
)
bja

H
j x+ λh, (A.7a)

∇xf (h,x) =

m∑
j=1

(
bHj hx

Haj − yj
)
ajb

H
j h+ λx, (A.7b)

∇2f (h,x) =

[
A B
BH A

]
, (A.7c)

where

A :=

[ ∑m
j=1

∣∣aH
j x
∣∣ 2bjbHj + λ

∑m
j=1

(
bHj hx

Haj − yj
)
bja

H
j∑m

j=1

[(
bHj hx

Haj − yj
)
bja

H
j

]H ∑m
j=1

∣∣bHj h∣∣ 2ajaH
j + λ

]
∈ C2K×2K ,

B :=

[
0

∑m
j=1 bjb

H
j h
(
aja

H
j x
)H∑m

j=1 aja
H
j x
(
bjb

H
j h
)H

0

]
∈ C2K×2K .

Throughout this paper, we shall often use f (h,x) and f (z) interchangeably for any z =
[

h
x

]
, whenever

it is clear from the context.
Before proceeding, we present two useful properties of the operator A and the design vectors {bj}mj=1.

Lemma 1. For A defined in (B.3), with probability at least 1−m−γ ,

‖A‖ ≤
√

2K logK + γ logm.

Proof. See Li et al. [2019, Lemma 5.12].

Lemma 2. For any m ≥ 3 and any 1 ≤ l ≤ m, we have

m∑
j=1

∣∣bHl bj∣∣ ≤ 4 logm.

Proof. See Ma et al. [2018, Lemma 48].

A.2.2 Leave-one-out auxiliary sequences

The key to establishing the incoherence hypotheses (A.6b) and (A.6c) is to introduce a collection of auxiliary
leave-one-out sequences — an approach first introduced by Ma et al. [2018]. Specifically, for each 1 ≤ l ≤ m,
define the leave-one-out loss function as follows

f (l) (h,x) :=
∑
j:j 6=l

∣∣bHj hxHaj − yj
∣∣2 + λ ‖h‖22 + λ ‖x‖22 ,

which is obtained by discarding the lth sample. We then generate the auxiliary sequence {h(t),l,x(t),l}t≥0
by running the same nonconvex algorithm w.r.t. f (l)(·, ·), as summarized in Algorithm 2. In a nutshell, the
resulting leave-one-out sequence {h(t),l,x(t),l}t≥0 is statistically independent from the design vector al and
is expected to stay exceedingly close to the original sequence (given that only a single sample is dropped),
which in turn facilitate the analysis of the correlation of al and xt as claimed in (A.6b). In the mean time,
this strategy also proves useful in controlling the correlation of bl and ht as in (A.6c), albeit with more
delicate arguments.
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Algorithm 2 The lth leave-one-out sequence for nonconvex blind deconvolution

Input: {aj}1≤j≤m,j 6=l, {bj}1≤j≤m,j 6=l and {yj}1≤j≤m,j 6=l.
Spectral initialization: let σ1

(
M (l)

)
, ȟ0,(l) and x̌0,(l) be the leading singular value, the leading left and

right singular vectors of
M (l) :=

∑
j:j 6=l

yjbja
H
j , (A.8)

respectively. Set h0,(l) =
√
σ1
(
M (l)

)
ȟ0,(l) and x0,(l) =

√
σ1
(
M (l)

)
x̌0,(l).

Gradient updates: for t = 0, 1, . . . , t0 − 1 do[
ht+1/2,(l)

xt+1/2,(l)

]
=

[
ht,(l)

xt,(l)

]
− η

[
∇hf (l) (ht,xt)
∇xf (l) (ht,xt)

]
,

[
ht+1,(l)

xt+1,(l)

]
=


√
‖xt+1/2,(l)‖

2

‖ht+1/2,(l)‖
2

ht+1/2,(l)√
‖ht+1/2,(l)‖

2

‖xt+1/2,(l)‖
2

xt+1/2,(l)

 . (A.9a)

Similar to the notation adopted for the original sequence, we shall define the alignment parameter for
the leave-one-out sequence as follows

αt,(l) := arg min
α∈C

{∥∥∥ 1
αh

t,(l) − h?
∥∥∥2
2

+
∥∥αxt,(l) − x?∥∥2

2

}
, (A.10a)

αt+1/2,(l) := arg min
α∈C

{∥∥∥ 1
αh

t+1/2,(l) − h?
∥∥∥2
2

+
∥∥αxt+1/2,(l) − x?

∥∥2
2

}
, (A.10b)

along with the properly rescaled iterates

z̃t,(l) =

[
h̃t,(l)

x̃t,(l)

]
:=

[
1

αt,(l)
ht,(l)

αt,(l)xt,(l)

]
, (A.11a)

z̃t+1/2,(l) =

[
h̃t+1/2,(l)

x̃t+1/2,(l)

]
:=

[
1

αt+1/2,(l)
ht+1/2,(l)

αt+1/2,(l)xt+1/2,(l)

]
. (A.11b)

Further we define the alignment parameter between zt,(l) and z̃t as

α
t,(l)
mutual := arg min

α∈C

{∥∥∥ 1
αh

t,(l) − 1

αt
ht
∥∥∥2
2

+
∥∥∥αxt,(l) − αtxt∥∥∥2

2

}
, (A.12a)

α
t+1/2,(l)
mutual := arg min

α∈C

{∥∥∥ 1
αh

t+1/2,(l) − 1

αt+1/2
ht+1/2

∥∥∥2
2

+
∥∥∥αxt+1/2,(l) − αt+1/2xt+1/2

∥∥∥2
2

}
. (A.12b)

Hereafter, we shall also denote

ẑt,(l) :=

[
ĥt,(l)

x̂t,(l)

]
=

[ 1

α
t,(l)
mutual

ht,(l)

α
t,(l)
mutualx

t,(l)

]
, (A.13a)

ẑt+1/2,(l) :=

[
ĥt+1/2,(l)

x̂t+1/2,(l)

]
=

[ 1

α
t+1/2,(l)
mutual

ht+1/2,(l)

α
t+1/2,(l)
mutual xt+1/2,(l)

]
. (A.13b)

A.2.3 Additional induction hypotheses

In addition to the set of induction hypotheses already listed in (A.6), we find it convenient to include the
following hypotheses concerning the leave-one-out sequences. Specifically, for any 0 < t ≤ t0 and any
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1 ≤ l ≤ m, the hypotheses claim that

dist
(
zt,(l), z̃t

)
≤ C2

 µ√
m

√
µ2K log9m

m
+

σ

log2m

 (A.14a)

∥∥z̃t,(l) − z̃t∥∥
2
. C2

 µ√
m

√
µ2K log9m

m
+

σ

log2m

 (A.14b)

dist
(
z0,(l), z?

)
.

√
µ2K logm

m
+ σ

√
K logm (A.14c)

dist
(
z0,(l), z̃0

)
.

µ√
m

√
µ2K log5m

m
+

σ

log2m
(A.14d)

for some constant C2 � C2
4 . Furthermore, there are several immediate consequences of the hypotheses (A.6)

and (A.14) that are also useful in the analysis, which we gather as follows. Note that the notation (h̃t, x̃t),
(ĥt, x̂t), (ĥt,(l), x̂t,(l)) and αt has been defined in (A.4b), (A.5b), (A.13a) and (A.2a), respectively.

Lemma 3. Instate the notation and assumptions in Theorem 2. For t ≥ 0, suppose that the hypotheses
(A.6) and (A.14) hold in the first t iterations. Then there exist some constants C1, C > 0 such that for any
1 ≤ l ≤ m,

dist
(
zt, z?

)
≤ C1

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
, (A.15a)

∥∥∥ht(xt)H − h?x?H∥∥∥ ≤ C (√µ2K logm

m
+ λ+ σ

√
K logm

)
, (A.15b)

∥∥z̃t,(l) − z?∥∥
2
≤ 2C1

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
, (A.15c)

1

2
≤
∥∥x̃t∥∥

2
≤ 3

2
,

1

2
≤
∥∥h̃t∥∥

2
≤ 3

2
, (A.15d)

1

2
≤
∥∥x̃t,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥h̃t,(l)∥∥

2
≤ 3

2
, (A.15e)

1

2
≤
∥∥x̂t,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥ĥt,(l)∥∥

2
≤ 3

2
. (A.15f)

In addition, if t > 0, then one also has

∥∥ẑt−1/2 − z?∥∥
2
≤ C

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
. (A.15g)

Proof. See Appendix A.4.

A.3 Inductive analysis
In this subsection, we carry out the analysis by induction.

A.3.1 Step 1: Characterizing local geometry

Similar to Ma et al. [2018, Lemma 14], local linear convergence is made possible when some sort of restricted
strong convexity and smoothness are present simultaneously. To be specific, define the following squared
loss that excludes the regularization term

freg-free (z) = freg-free (h,x) :=

m∑
j=1

∣∣bHj hxHaj − yj
∣∣2. (A.16)
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Our result is this:

Lemma 4. Let δ := c/ log2m for some sufficiently small constant c > 0. Suppose that m ≥ Cµ2K log9m

for some sufficiently large constant C > 0 and that σ
√
K log5m ≤ c1 for some sufficiently small constant

c1 > 0. Then with probability 1−O
(
m−10 + e−K logm

)
, one has

uH
[
D∇2f (z) +∇2f (z)D

]
u ≥ ‖u‖22 /8 and∥∥∇2f (z)
∥∥ ≤ 4

simultaneously for all points

z =

[
h
x

]
, u =


h1 − h2

x1 − x2

h1 − h2

x1 − x2

 and D =


γ1IK

γ2IK
γ1IK

γ2IK


obeying the following properties:

• z satisfies

max {‖h− h?‖2 , ‖x− x
?‖2} ≤ δ,

max
1≤j≤m

∣∣aH
j (x− x?)

∣∣ ≤ 2C3
1

log3/2m
,

max
1≤j≤m

∣∣bHj h∣∣ ≤ 2C4

(
µ log2m√

m
+ σ

)
;

• z1 := (h1,x1) is aligned with z2 := (h2,x2) in the sense that ‖z1 − z2‖2 = dist(z1, z2); in addition, they
satisfy

max {‖h1 − h?‖2 , ‖h2 − h?‖2 , ‖x1 − x?‖2 , ‖x2 − x?‖2} ≤ δ;

• γ1, γ2 ∈ R and obey
max {|γ1 − 1| , |γ2 − 1|} ≤ δ.

Proof. See Appendix A.6.

In words, the function f(·) resembles a strongly convex and smooth function when we restrict attention
to (i) a highly restricted set of points z and (ii) a highly special set of directions u.

A.3.2 Step 2: `2 error contraction

Next, we demonstrate that under the hypotheses (A.6) for the tth iteration, the next iterate will undergo
`2 error contraction, as long as the stepsize is properly chosen. The proof is largely based on the restricted
strong convexity and smoothness established in Lemma 4.

Lemma 5. Set λ = Cλσ
√
K logm for some large constant Cλ > 0. The stepsize parameter η > 0 in

Algorithm 2 is taken to be some sufficiently small constant. There exists some constant C > 0 such that with
probability at least 1−O

(
m−100 + e−CK logm

)
, if the hypotheses (A.6) hold true at the tth iteration, then

dist
(
zt+1, z?

)
≤
∥∥ẑt+1/2 − z?

∥∥
2
≤ ρdist

(
zt, z?

)
+ C1η

(
λ+ σ

√
K logm

)
(A.17)

for some constants ρ = 1− η/16 and C1 > 0.

Proof. See Appendix A.7.

To establish this lemma and many other results, we need to ensure that the alignment parameters and
the sizes of the iterates do not change much, as stated below.
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Corollary 1. Instate the notation and assumptions in Theorem 2. For an integer t > 0, suppose that the
hypotheses (A.6) and (A.14) hold in the first t − 1 iterations. Then there exists some constant C > 0 such
that for any 1 ≤ l ≤ m, one has

∣∣∣∣αt∣∣− 1
∣∣ . dist

(
z̃t, z?

)
.

√
µ2K logm

m
+ λ+ σ

√
K logm, (A.18a)∣∣∣∣αt−1/2αt−1

− 1

∣∣∣∣ . η

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
, (A.18b)

∣∣∣∣∣∣αt,(l)mutual

∣∣∣− 1
∣∣∣ . ∥∥ẑt,(l) − z?∥∥

2
.

√
µ2K logm

m
+ λ+ σ

√
K logm, (A.18c)

1

2
≤
∥∥xt∥∥

2
≤ 3

2
,

1

2
≤
∥∥ht∥∥

2
≤ 3

2
, (A.18d)

1

2
≤
∥∥xt,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥ht,(l)∥∥

2
≤ 3

2
(A.18e)

with probability at least 1−O
(
m−100 + e−CK logm

)
.

Proof. See Appendix A.5.

A.3.3 Step 3: Leave-one-out proximity

We then move on to justifying the close proximity of the leave-one-out sequences and the original sequences,
as stated in the hypothesis (A.14a).

Lemma 6. Suppose the sample complexity obeys m ≥ Cµ2K log9m for some sufficiently large constant
C > 0. If the hypotheses (A.6a)-(A.6c) hold for the tth iteration, then with probability at least 1 −
O
(
m−100 +me−cK

)
for some constant c > 0, one has

max
1≤l≤m

dist
(
zt+1,(l), z̃t+1

)
≤ C2

 µ√
m

√
µ2K log9m

m
+

σ

log2m

 (A.19a)

and max
1≤l≤m

∥∥z̃t+1,(l) − z̃t+1
∥∥
2
. C2

 µ√
m

√
µ2K log9m

m
+

σ

log2m

 , (A.19b)

provided that the stepsize η > 0 is some sufficiently small constant.

Proof. See Appendix A.8.

A.3.4 Step 4: Establishing incoherence

The next step is to establish the hypotheses concerning incoherence, namely, (A.6b) and (A.6c) for the
(t+ 1)-th iteration.

We start with the incoherence of al and xt+1, which is much easier to handle. The standard Gaussian
concentration inequality gives

max
1≤l≤m

∣∣∣aH
l

(
x̃t+1,(l) − x?

)∣∣∣ ≤ 20
√

logm max
1≤l≤m

∥∥x̃t+1,(l) − x?
∥∥
2

(A.20)

with probability exceeding 1−O
(
m−100

)
. Then the triangle inequality and Cauchy-Schwarz inequality yield

∣∣aH
l

(
x̃t+1 − x?

)∣∣ ≤ ∣∣∣aH
l

(
x̃t+1 − x̃t+1,(l)

)∣∣∣+
∣∣∣aH
l

(
x̃t+1,(l) − x?

)∣∣∣
≤ ‖al‖2

∥∥x̃t+1 − x̃t+1,(l)
∥∥
2

+
∣∣∣aH
l

(
x̃t+1,(l) − x?

)∣∣∣
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≤ 10
√
KC2

 µ√
m

√
µ2K log9m

m
+

σ

log2m


+ 20

√
logm · 2C1

(√
µ2K logm

m
+ λ+ σ

√
K logm

)

≤ C3

√µ2K log2m

m
+ λ+ σ

√
K logm

 , (A.21)

where C3 � C1, the penultimate inequality follows from (F.2), (A.19b), (A.20) and (A.15c). This establishes
the hypothesis (A.6b) for the (t+ 1)-th iteration.

Regarding the incoherence of bl and ht+1 (as stated in the hypothesis (A.6c)), we have the following
lemma.

Lemma 7. Suppose the sample complexity obeys m ≥ Cµ2K log9m for some sufficiently large constant
C > 0 and λ = Cλσ

√
K logm for some absolute constant Cλ > 0. If the hypotheses (A.6a)-(A.6c) hold for

the tth iteration, then with probability exceeding 1−O
(
m−100 +me−CK

)
for some constant C > 0, one has

max
1≤l≤m

∣∣bHl h̃t+1
∣∣ ≤ C4

(
µ√
m

log2m+ σ

)
,

as long as C4 > 0 is some sufficiently large constant and η > 0 is taken to be some sufficiently small constant.

Proof. See Appendix A.9.

A.3.5 The base case: Spectral initialization

To finish the induction analysis, it remains to justify the induction hypotheses for the base case. Recall that
σ (M) , ȟ0 and x̌0 denote respectively the leading singular value, the left and the right singular vectors of

M :=

m∑
j=1

yjbja
H
j .

The spectral initialization procedure sets h0 =
√
σ1 (M)ȟ0 and x0 =

√
σ1 (M)x̌0.

To begin with, the following lemma guarantees that
(
h0,x0

)
satisfies the desired conditions (A.6e) and

(A.6h).

Lemma 8. Suppose the sample size obeys m ≥ Cµ2K log4m for some sufficiently large constant C > 0.
Then with probability at least 1−O

(
m−100

)
, we have

min
α∈C,|α|=1

{∥∥αh0 − h?
∥∥
2

+
∥∥αx0 − x?

∥∥
2

}
.

√
µ2K logm

m
+ σ

√
K logm

and
∣∣∣∣α0

∣∣− 1
∣∣ ≤ 1/4.

In view of the definition of dist (·, ·), we can invoke Lemma 8 to reach

dist
(
z0, z?

)
= min

α∈C

√∥∥ 1
αh

0 − h?
∥∥2
2

+ ‖αx0 − x?‖22 ≤ min
α∈C

{∥∥ 1
αh

0 − h?
∥∥
2

+
∥∥αx0 − x?

∥∥
2

}
≤ min
α∈C,|α|=1

{∥∥αh0 − h?
∥∥
2

+
∥∥αx0 − x?

∥∥
2

}
≤ C1

(√
µ2K logm

m
+ σ

√
K logm

)
. (A.22)

Repeating the same arguments yields that, with probability exceeding 1−O(m−20),

dist
(
z0,(l), z?

)
≤ C1

(√
µ2K logm

m
+ σ

√
K logm

)
, 1 ≤ l ≤ m, (A.23)

and
∣∣∣∣α0,(l)

∣∣− 1
∣∣ ≤ 1/4, as asserted in the hypothesis (A.14c).

The following lemma justifies (A.14d) as well as (A.6c) for the base case.
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Lemma 9. Suppose the sample size obeys m ≥ Cµ2K log9m for some sufficiently large constant C > 0 and
the noise satisfies σ

√
K logm ≤ c/ log2m for some sufficiently small constant c > 0. Let τ = Cτ log4m

for some sufficiently large constant Cτ > 0 such that τ is an integer. Then with probability at least 1 −
O
(
m−100 +me−cK

)
for some constant c > 0, we have

max
1≤l≤m

dist
(
z0,(l), z̃0

)
.

µ√
m

√
µ2K log5m

m
+

σ

log2m
, (A.24a)

max
1≤l≤m

∣∣∣bHl h̃0
∣∣∣ . µ log2m√

m
+ σ, (A.24b)

max
1≤j≤τ

∣∣(bj − b1)Hh̃0
∣∣ . µ√

m

1

logm
+

σ

logm
. (A.24c)

Finally, we establish the hypothesis (A.6b) for the base case, which concerns the incoherence of x0 with
respect to the design vectors {al}.

Lemma 10. Suppose the sample size obeys m ≥ Cµ2K log6m for some sufficiently large constant C > 0

and σ
√
K log5m ≤ c for some small constant c > 0. Then with probability at least 1−O

(
m−100+me−c2K

)
for some constant c2 > 0, we have

max
1≤j≤m

∣∣aH
j

(
x̃0 − x?

)∣∣ .
√
µ2K log2m

m
+ σ
√
K logm.

The proof of these three lemmas can be easily obtained via straightforward modifications to Ma et al.
[2018, Lemmas 19,20,21]; we omit the details here for the sake of brevity.

A.3.6 Proof of Theorem 2

With the above results in place, it is straightforward to prove Theorem 2. The first two claims follows
respectively from (A.22) and (A.6d). Regarding (2.6c), it follows that∥∥∥ht(xt)H − h?x?H∥∥∥

F
≤
∥∥∥ht(xt)H − h?(xt)H∥∥∥

F
+
∥∥∥h?(xt)H − h?x?H∥∥∥

F

≤
∥∥ht − h?∥∥

2

∥∥xt∥∥
2

+ ‖h?‖2
∥∥xt − x?∥∥

2

≤ 2 ‖z?‖2

(
ρtdist

(
z0, z?

)
+
C1

(
λ+ σ

√
K logm

)
cρ ‖z?‖2

)

where the last inequality follows from (A.6d) and the fact that

∥∥xt∥∥
2
≤ ‖x?‖2 +

∥∥xt − x?∥∥
2
≤ ‖z?‖2 + ρtdist

(
z0, z?

)
+
C1

(
λ+ σ

√
K logm

)
cρ ‖z?‖2

≤ 2 ‖z?‖2 .

This concludes the proof.

A.4 Proof of Lemma 3
1. Condition (A.15a) follows directly from the `2 contraction (A.6a) and the bound (A.6e) for the base case.

2. (A.15b) is direct consequence of (A.15a) and triangle inequality. We have∥∥htxtH − h?x?H∥∥F =
∥∥∥h̃tx̃tH − h?x?H∥∥∥

F

≤
∥∥∥h̃tx̃tH − h̃tx?H∥∥∥

F
+
∥∥∥h̃tx?H − h?x?H∥∥∥

F

≤
∥∥∥h̃t∥∥∥

2

∥∥x̃t − x?∥∥
2

+
∥∥∥h̃t − h?∥∥∥

2
‖x?‖2
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≤
(
1 + dist

(
zt, z?

))
dist

(
zt, z?

)
+ dist

(
zt, z?

)
≤ C

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
,

where the first equality follows from the definitions of h̃t and x̃t (cf. (A.4b)) and C > 0 is some sufficiently
large constant.

3. Regarding (A.15c), it follows from the triangle inequality that

max
1≤l≤m

∥∥z̃t,(l) − z?∥∥
2
≤ max

1≤l≤m

{∥∥z̃t,(l) − z̃t∥∥
2

+
∥∥z̃t − z?∥∥

2

}
≤ C̃C2

 µ√
m

√
µ2K log9m

m
+

σ

log2m

+ C1

(√
µ2K logm

m
+ λ+ σ

√
K logm

)

≤ 2C1

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
for t > 0. Here, the penultimate inequality follows from the distance bounds (A.14b) and (A.15a), while
the last inequality holds as long as m ≥ Cµ2 log8m for some sufficiently large constant C > 0. The base
case follows from (A.14c).

4. Condition (A.15d) immediately results from (A.15a), the assumption ‖x?‖2 = ‖h?‖2 = 1, the definition
of dist (·, ·), and the triangle inequality.

5. With regards to (A.15e) and (A.15f), we shall only provide the proof for the result concerning h; the
result concerning x can be derived analogously. In terms of (A.15f), one has∥∥ĥt,(l)∥∥

2
≤
∥∥h̃t∥∥

2
+
∥∥ĥt,(l) − h̃t∥∥

2
=
∥∥h̃t∥∥

2
+ dist

(
ht,(l), h̃t

)
. 1 + C2

√µ4K log9m

m2
+

σ

log2m

 � 1.

Here, the first line comes from triangle inequality as well as the definitions of ĥt,(l) and h̃t, whereas the
last inequality comes from (A.14a). A lower bound can be derived in a similar manner:

∥∥ĥt,(l)∥∥
2
≥
∥∥h̃t∥∥

2
−
∥∥ĥt,(l) − h̃t∥∥

2
& 1− C2

√µ4K log9m
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σ

log2m

 � 1.

Regarding (A.15e), apply (A.14b) and (A.15d) to obtain

∥∥h̃t,(l)∥∥
2
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log2m
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and, similarly,

∥∥h̃t,(l)∥∥
2
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2
−
∥∥h̃t,(l) − h̃t∥∥

2
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µ2K log9m

m
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σ

log2m

 � 1.

The base case follows from similar deduction using (A.14d), (A.15d) and triangle inequality.

6. When it comes to Condition (A.15g), it is seen from (A.6a) and the choice ρ = 1− cρη that∥∥∥ẑt−1/2 − z?∥∥∥
2
≤ ρtdist

(
z0, z?

)
+

C1

1− ρ
η
(
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√
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)
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= ρtdist
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√
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)
.

Combining this with (A.6e) guarantees the existence of some sufficiently large constant C̃ > 0 such that∥∥∥ẑt−1/2 − z?∥∥∥
2
≤ ρt · C̃

(√
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+ λ+ σ

√
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,

provided that the constant C > 0 is large enough.

A.5 Proof of Corollary 1
1. To establish (A.18a), we recall that the balancing operation (1.6b) guarantees ‖ht‖2 = ‖xt‖2. Hence, in

view of the definitions of h̃t and x̃t in (A.4b), we have

0 =
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2
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∥∥xt∥∥2

2
=
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2
.

It then follows from the triangle inequality and the assumption ‖x?‖2 = ‖h?‖2 that
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Rearranging terms, we are left with√
1− ‖x̃t − x?‖2
1 +
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2

≤
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1−
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.

Combining this with (A.15a), we arrive at
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K logm
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2. Regarding (A.18a), take x1 = αt−1xt−1/2, h1 = ht−1/2/αt−1, x2 = αt−1xt−1 and h2 = ht−1/αt−1.
Then we check that these vectors satisfy the conditions of Ma et al. [2018, Lemma 54]. Towards this,
observe that

max {‖x1 − x?‖2 , ‖h1 − h?‖2 , ‖x2 − x?‖2 , ‖h2 − h?‖2}
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holds with probability over 1−O(m−100+e−CK logm) for some constant C > 0. Here, the first inequality
comes from the definitions of ẑt−1/2 (cf. (A.5a)), and the last inequality follows from (A.15a) and (A.17).
Hence, the condition of Ma et al. [2018, Lemma 54] is satisfied. Note that the statement of Ma et al.
[2018, Lemma 54] involves two quantities α1 and α2, which in our case are given by α1 = αt−1/2/αt−1

and α2 = 1. Ma et al. [2018, Lemma 54] tells us that
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Additionally, the gradient update rule (1.6a) reveals that∥∥∥∥∥
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where the last inequality utilizes the consequence of (A.18a) that

1

2
≤ 1−

∣∣∣∣αt−1∣∣− 1
∣∣ ≤ ∣∣αt−1∣∣ ≤ 1 +

∣∣∣∣αt−1∣∣− 1
∣∣ ≤ 2.

Then, one has[
∇freg-free

(
z̃t−1

)
−∇freg-free (z?)

∇freg-free (z̃t−1)−∇freg-free (z?)

]
=

∫ 1

0

∇2freg-free (z (s)) ds

[
z̃t − z?
z̃t − z?

]
,

where z (s) = z? + s (z̃t − z?). Therefore, for all 0 ≤ s ≤ 1 we have

max {‖h (s)− h?‖2 , ‖x (s)− x?‖2} ≤
c

log2m
,

max
1≤j≤m

∣∣aH
j (x (s)− x?)

∣∣ ≤ 2C3
1

log3/2m
,

max
1≤j≤m

∣∣bHj h (s)
∣∣ ≤ 2C4

(
µ log2m√

m
+ σ

)
,

which are guaranteed by the induction hypotheses (A.6). The conditions of Lemma (4) are satisfied,
allowing us to obtain∥∥∥∥∫ 1

0

∇2freg-free (z (s)) ds

∥∥∥∥ ≤ ∥∥∥∥∫ 1

0

∇2f (z (s)) ds

∥∥∥∥+ λ ≤ 4 + λ ≤ 5.

Consequently, it follows that∥∥∥∥∥
[

ht−1/2

αt−1
− ht−1

αt−1

αt−1xt−1/2 − αt−1xt−1

]∥∥∥∥∥
2

≤ 20η
∥∥z̃t−1 − z?∥∥

2
+ ηλ

∥∥z̃t−1∥∥
2

+ 4η ‖∇freg-free (z?)‖2

≤ Cη

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
,

where the last inequality results from (A.15a), (A.15d), and (A.31). Hence, we arrive at∣∣∣∣αt−1/2αt−1
− 1

∣∣∣∣ . η

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
.
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3. Similarly, the balancing step (A.9a) implies
∥∥ht,(l)∥∥2

2
=
∥∥xt,(l)∥∥2

2
. From the definitions of αt,(l)mutual

(cf. (A.12a)), ĥt,(l) and x̂t,(l) (cf. (A.13a)), we have

0 =
∥∥ht,(l)∥∥2

2
−
∥∥xt,(l)∥∥2

2
=
∣∣αt,(l)mutual

∣∣2∥∥ĥt,(l)∥∥2
2
−
∣∣αt,(l)mutual

∣∣−2∥∥x̂t,(l)∥∥2
2
.

Then the triangle inequality together with the assumption ‖x?‖2 = ‖h?‖2 gives

0 =
∣∣αt,(l)mutual

∣∣2∥∥ĥt,(l)∥∥2
2
− 1∣∣αt,(l)mutual

∣∣2 ∥∥x̂t,(l)∥∥22 ≤ ∣∣αt,(l)mutual

∣∣2 (1 +
∥∥ĥt,(l) − h?∥∥

2

)2
−
(
1−

∥∥x̂t,(l) − x?∥∥
2

)2∣∣αt,(l)mutual

∣∣2 ,

0 =
∣∣αt,(l)mutual

∣∣2∥∥ĥt,(l)∥∥2
2
− 1∣∣αt,(l)mutual

∣∣2 ∥∥x̂t,(l)∥∥22 ≥ ∣∣αt,(l)mutual

∣∣2 (1−
∥∥ĥt,(l) − h?∥∥

2

)2
−
(
1 +

∥∥x̂t,(l) − x?∥∥
2

)2∣∣αt,(l)mutual

∣∣2 ,

which in turn lead to √√√√1−
∥∥x̂t,(l) − x?∥∥

2

1 +
∥∥ĥt,(l) − h?∥∥

2

≤
∣∣αt,(l)mutual

∣∣ ≤
√√√√1 +

∥∥x̂t,(l) − x?∥∥
2

1−
∥∥ĥt,(l) − h?∥∥

2

.

Taking this together with (A.14a) and (A.15a), we reach∣∣∣∣∣αt,(l)mutual

∣∣− 1
∣∣∣ . ∥∥ẑt,(l) − z?∥∥

2
≤
∥∥ẑt,(l) − z̃t∥∥

2
+
∥∥z̃t − z?∥∥

2

≤ C2

√µ4K log9m

m2
+

σ

log2m

+ C1

(√
µ2K logm

m
+ λ+ σ

√
K logm

)

≤ (C1 + C2)

(√
µ2K logm

m
+ λ+ σ

√
K logm

)
,

where the second line follows from the distance bounds (A.14a) and (A.15a), and the last line holds with
the proviso that m ≥ µ2K log8m. This establishes the claim (A.18c).

4. Finally, (A.18d) and (A.18e) are direct consequences of (A.18a), (A.18c) as well as the fact that ‖h?‖2 =
‖x?‖2 = 1. We omit the details for the sake of brevity.

A.6 Proof of Lemma 4
Define another loss function as follows

fclean (z) :=

m∑
j=1

∣∣bHj hxHaj − bHj h?x?Haj
∣∣2,

which excludes both the noise ξ and the regularization term from consideration when compared with the
original loss f(·). By virtue of (A.7), it is easily seen that

∇2freg-free (z) = ∇2fclean (z) +

[
M 0
0 M

]
, (A.25)

where

M :=

[
0 −

∑m
j=1 ξjbja

H
j

−
(∑m

j=1 ξjbja
H
j

)H
0

]
∈ C2K×2K .

By setting

u =


h1 − h2

x1 − x2

h1 − h2

x1 − x2

 =:


uh
ux
uh
ux


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and recalling the definitions of D, γ1, γ2 in the statement of Lemma 4, we arrive at

uH
[
D∇2freg-free (z) +∇2freg-free (z)D

]
u

= uH
[
D∇2fclean (z) +∇2fclean (z)D

]
u− 2 (γ1 + γ2)Re

uH
h

m∑
j=1

ξjbja
H
j ux


− 2 (γ1 + γ2)Re

uhH m∑
j=1

ξjbjaH
j ux


= uH

[
D∇2fclean (z) +∇2fclean (z)D

]
u− 4 (γ1 + γ2)Re

uH
h

m∑
j=1

ξjbja
H
j ux

 .

Consequently, with high probability one has∣∣uH
[
D∇2freg-free (z) +∇2freg-free (z)D

]
u− uH

[
D∇2fclean (z) +∇2fclean (z)D

]
u
∣∣

≤ 4 (γ1 + γ2)

∣∣∣∣∣∣Re
uH

h

m∑
j=1

ξjbja
H
j ux

∣∣∣∣∣∣ ≤ 4 (γ1 + γ2)

∥∥∥∥∥∥
m∑
j=1

ξjbja
H
j

∥∥∥∥∥∥ ‖u‖22
. σ

√
K logm ‖u‖22 =: Eres (A.26)

for any vector u, where the last inequality follows from Lemma 38 as well as the assumptions γ1, γ2 � 1.
The above bound allows us to turn attention to ∇2fclean, which has been studied in Ma et al. [2018]. In

particular, it has been shown in Ma et al. [2018] that

uH
[
D∇2fclean (z) +∇2fclean (z)D

]
u ≥ (1/4) · ‖u‖22 and

∥∥∇2fclean (z)
∥∥ ≤ 3

under the assumptions stated in the lemma. These bounds together with (A.26) yield

uH
[
D∇2freg-free (z) +∇2freg-free (z)D

]
u ≥ (1/4) · ‖u‖22 − Eres ≥ (1/8) · ‖u‖22 , (A.27a)

and
∥∥∇2freg-free (z)

∥∥ ≤ ∥∥∇2fclean (z)
∥∥+ sup

u6=0

Eres
‖u‖22

≤ 7/2, (A.27b)

provided that σ
√
K logm ≤ 0.5. To finish up, we recall that

∇2f (z) = ∇2freg-free (z) + λI,

which combined with (A.27) and the assumption λ ≤ Cλσ
√
K logm ≤ Cλc1/ log2m� 1 yields

uH
[
D∇2f (z) +∇2f (z)D

]
u = uH

[
D∇2freg-free (z) +∇2freg-free (z)D

]
u+ 2λuHDu

≥ uH
[
D∇2freg-free (z) +∇2freg-free (z)D

]
u

≥ ‖u‖22 /8

and ∥∥∇2f (z)
∥∥ ≤ ∥∥∇2freg-free (z)

∥∥+ λ ≤ 4.

A.7 Proof of Lemma 5
Recognizing that

freg-free (h,x) = freg-free

(
1

α
h, αx

)
and ∇freg-free (h,x) =

[
1
α∇hfreg-free

(
1
αh, αx

)
α∇xfreg-free

(
1
αh, αx

) ]
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and recalling the definitions of
(
h̃t, x̃t

)
:=
(

1

αt
ht, αtxt

)
, we can deduce that

dist
(
zt+1, z?

)
= dist

(
zt+1/2, z?

)
≤
∥∥∥∥[ 1

αt
ht+1/2 − h?

αtxt+1/2 − x?

]∥∥∥∥
2

(A.28)

=

∥∥∥∥∥∥
 h̃t − η

|αt|2∇hfreg-free
(
z̃t
)
− ηλh̃t −

(
h? − η

|αt|2∇hfreg-free (z?)
)
− η
|αt|2∇hfreg-free (z?)

x̃t − η |αt|2∇xfreg-free
(
z̃t
)
− ηλx̃t −

(
x? − η |αt|2∇xfreg-free (z?)

)
− η |αt|2∇xfreg-free (z?)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
 h̃t − η

|αt|2∇hfreg-free
(
z̃t
)
−
(
h? − η

|αt|2∇hfreg-free (z?)
)

x̃t − η |αt|2∇xfreg-free
(
z̃t
)
−
(
x? − η |αt|2∇xfreg-free (z?)

) ∥∥∥∥∥∥
2︸ ︷︷ ︸

=:β1

+

∥∥∥∥∥
[

η
|αt|2∇hfreg-free (z?)

η |αt|2∇xfreg-free (z?)

]∥∥∥∥∥
2︸ ︷︷ ︸

=:β2

+ ηλ

∥∥∥∥[ h̃tx̃t
]∥∥∥∥

2︸ ︷︷ ︸
=:β3

. (A.29)

Using an argument similar to the proof idea of Ma et al. [2018, Equation (210)], we can obtain

β2
1 =

∥∥∥∥∥h̃t − η

|αt|2
∇hfreg-free

(
z̃t
)
−

(
h? − η

|αt|2
∇hfreg-free (z?)

)∥∥∥∥∥
2

2

+
∥∥∥x̃t − η ∣∣αt∣∣2∇xfreg-free(z̃t)− (x? − η ∣∣αt∣∣2∇xfreg-free (z?)

)∥∥∥2
2

≤
(

1− η

8

)∥∥z̃t − z?∥∥2
2
. (A.30)

Regarding β2, we first invoke Lemma 14 and the fact ∇fclean (z?) = 0 to derive

‖∇freg-free (z?)‖2 ≤ ‖∇fclean (z?) ‖2 + ‖A∗ (ξ)‖ ‖h?‖2 + ‖A∗ (ξ)‖ ‖x?‖2
. σ

√
K logm. (A.31)

A little algebra then yields

β2
2 =

∥∥∥∥ η

|αt|2
∇hfreg-free (z?)

∥∥∥∥2
2

+
∥∥∥η ∣∣αt∣∣2∇xfreg-free (z?)

∥∥∥2
2

≤
( η2

|αt|4
+ η2

∣∣αt∣∣4 ) ‖∇freg-free (z?)‖22

. η2
(
σ
√
K logm

)2
,

which relies on the observation that |αt| � 1 (see Corollary 1). Finally, when it comes to β3, we have

β2
3 = η2λ2

∥∥h̃t∥∥2
2

+ η2λ2
∥∥x̃t∥∥2

2
≤ 8η2λ2,

using the fact that
∥∥x̃t∥∥

2
�
∥∥h̃t∥∥

2
� 1 (see Lemma 3).

As a result, as long as η > 0 is taken to be some constant small enough, combining (A.29) and the above
bounds on β1, β2 gives

dist
(
zt+1, z?

)
≤
∥∥∥ẑt+1/2 − z?

∥∥∥2
2
≤
√

(1− η/8)
∥∥z̃t − z?∥∥

2
+ C1η

(
λ+ σ

√
K logm

)
,

which together with the elementary fact
√

1− x ≤ 1− x/2 leads to

dist
(
zt+1, z?

)
≤
∥∥∥ẑt+1/2 − z?

∥∥∥
2
≤ (1− η/16)

∥∥z̃t − z?∥∥
2

+ C1η
(
λ+ σ

√
K logm

)
= (1− η/16) dist

(
zt, z?

)
+ C1η

(
λ+ σ

√
K logm

)
.

The advertised claim then follows, provided that C1 is large enough.
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A.8 Proof of Lemma 6
The lemma can be established in a similar manner as Ma et al. [2018, Lemma 17]. We have

dist
(
zt+1,(l), z̃t+1

)
= dist

(
zt+1/2,(l), z̃t+1/2

)
≤ max

{∣∣∣∣αt+1/2

αt

∣∣∣∣ , ∣∣∣∣ αt

αt+1/2

∣∣∣∣}
∥∥∥∥∥
[ 1

α
t,(l)
mutual

ht+1/2,(l) − 1

αt
ht+1/2

α
t,(l)
mutualx

t+1,(l) − αtxt+1/2

]∥∥∥∥∥
2

, (A.32)

where the second line comes from the same calculation as Ma et al. [2018, Eqn. (212)]. Repeating the analysis
in Ma et al. [2018, Appendix C.3] and using the gradient update rule, we obtain[ 1

α
t,(l)
mutual

ht+1/2,(l) − 1

αt
ht+1/2

α
t,(l)
mutualx

t+1,(l) − αtxt+1/2

]

=

 ĥt,(l) − η∣∣αt,(l)mutual

∣∣2∇hfreg-free(ẑt,(l))−
(
h̃t − η∣∣αt,(l)mutual

∣∣2∇hfreg-free(z̃t)
)

x̂t,(l) − η
∣∣αt,(l)mutual

∣∣2∇xfreg-free(ẑt,(l))− (x̃t − η∣∣αt,(l)mutual

∣∣2∇xfreg-free(z̃t))


︸ ︷︷ ︸
=:ν1

+ η


(

1
|αt|2 −

1∣∣αt,(l)mutual

∣∣2)∇hfreg-free(ẑt)(
|αt|2 −
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∣∣2)∇xfreg-free(ẑt)


︸ ︷︷ ︸
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−η

 1∣∣αt,(l)mutual

∣∣2 (bHl ĥt,(l)x̂t,(l)Hal − yl) blaH
l x̂

t,(l)

∣∣αt,(l)mutual

∣∣2(bHl ĥt,(l)x̂t,(l)Hal − yl)albHl ĥt,(l)


︸ ︷︷ ︸
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+ ηλ

[
ĥt,(l) − h̃t
x̂t,(l) − x̃t

]
︸ ︷︷ ︸

=:ν4

. (A.33)

In what follows, we shall look at ν1, ν2, ν3 and ν4 separately.

• It has been shown in Ma et al. [2018, Lemma 17] that

‖ν1‖2 ≤ (1− η/16)
∥∥ẑt,(l) − z̃t∥∥

2
; ‖ν2‖2 . C1

1

log2m

∥∥ẑt,(l) − z̃t∥∥
2
. (A.34)

• Regarding ν3, we have

‖ν3‖2 =

√√√√ 1∣∣αt,(l)mutual

∣∣4 ∥∥∥(bHl ĥt,(l)x̂t,(l)Hal − yl) blaH
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t,(l)
∥∥∥2
2

+
∣∣αt,(l)mutual
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2

≤ 1∣∣αt,(l)mutual
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∥∥∥
2

+
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∣∣2 ∥∥∥∥(bHl ĥt,(l)x̂t,(l)Hal − yl)albHl ĥt,(l)∥∥∥∥
2

≤ 1∣∣αt,(l)mutual

∣∣2 ∥∥∥bHl (ĥt,(l)x̂t,(l)H − h?x?H)alblaH
l x̂

t,(l)
∥∥∥
2︸ ︷︷ ︸

=:ν31

+
∣∣αt,(l)mutual

∣∣2 ∥∥∥∥bHl (ĥt,(l)x̂t,(l)H − h?x?H)alalbHl ĥt,(l)∥∥∥∥
2︸ ︷︷ ︸

=:ν32

+
1∣∣αt,(l)mutual

∣∣2 ∥∥∥ξlblaH
l x̂
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=:ν33

+
∣∣αt,(l)mutual

∣∣2 ∥∥∥ξlalbHl ĥt,(l)∥∥∥
2︸ ︷︷ ︸

=:ν34

, (A.35a)

where the first inequality comes from the elementary inequality
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, and the

second inequality follows from the triangle inequality. The bounds of ν31 and ν32 follow from the same
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derivation as Ma et al. [2018, Equation (217)] and are thus omitted here for simplicity. The quantity ν31
can be upper bounded by

ν31 ≤
∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ ‖bl‖2 ∣∣∣aH

l x̂
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∣∣∣

≤
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m
· 20
√
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2

≤ 40

√
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m

∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ , (A.35b)

where the penultimate inequality follows from the fact that ‖bl‖2 =
√
K/m and (F.1), and the last line

makes use of (A.15f). Regarding ν32, one has
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∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ · 10

√
K ·

(√
K

m
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+
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where the second line follows from (F.2), triangle inequality and the fact that ‖bl‖2 =
√
K/m; the

penultimate inequality follows from (A.14a) and (A.6c); the last line holds as long as m � µ2K log3m.
Further we have∣∣∣bHl (ĥt,(l) − h?)∣∣∣ ≤ ∣∣∣bHl (ĥt,(l) − h̃t)∣∣∣+
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, (A.35d)

where the second line follows from the fact that ‖bl‖2 =
√
K/m; the penultimate inequality follows from

(A.14a), (A.6c) and (2.1); the last line holds as long as m� µ2K log3m. Therefore,∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣
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(
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logm
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√

logm

)
, (A.35e)

where the second inequality follows from triangle inequality and (F.1); the penultimate inequality follows
from (A.35d), (A.14a), (A.15a) and (F.1); the last line holds as long as m � µ2K logm. Substituting
(A.35e) into (A.35b) and (A.35c), we reach
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as long as m� µ2K log9m. Regarding ν33 and ν34, it is seen that
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where (i) holds by the property of sub-Gaussian variables (cf. Vershynin [2018, Proposition 2.5.2]) and
the independence between ξl,al and x̂t,(l), (ii) holds by (A.15f), (iii) is due to Lemma (38), the triangle
inequality and (2.1), and (iv) follows from (A.35d) and (2.1). Consequently, by (A.35f)-(A.35h) we have
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• Finally, in terms of ν4 one has
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With the above bounds in place, we can demonstrate that
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∥∥ẑt,(l) − z̃t∥∥
2

+
1− η/32

1− η/16
Cη

(C4)
2 µ√

m

√
µ2K log9m

m
+ C4

σ

log2m

+
1− η/32

1− η/16
ηλ
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provided that η > 0 is some sufficiently small constant and C2 � C2
4 . To see why (i) holds, we observe that∣∣∣∣∣∣∣∣αt+1/2
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In addition, (ii) follows from (A.34), (A.36) and (A.37), whereas the last inequality of (A.38) relies on the
hypothesis (A.14a).

Next, we turn to the second inequality claimed in the lemma. In view of (A.15a) in Lemma 3, we have
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which together with the triangle inequality and (A.38) yields∥∥ẑt+1,(l) − z?
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In other words, both z̃t+1 and ẑt+1,(l) are sufficiently close to the truth z?. Consequently, we are ready to
invoke Ma et al. [2018, Lemma 55]. Taking h1 = h̃t+1, x1 = x̃t+1, h2 = ĥt+1,(l) and x2 = x̂t+1,(l) in Ma
et al. [2018, Lemma 55] yields
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where the last inequality follows from (A.39).

A.9 Proof of Lemma 7
Recall from Corollary 1 that there exist some constant C > 0 such that∣∣∣∣αt+1/2
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with δ � 1, thus indicating that
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The gradient update rule regarding ht+1 then leads to
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(A.42)

The first three terms can be controlled via the same arguments as Ma et al. [2018, Appendix C.4], which are
built upon the induction hypotheses (A.6a)-(A.6c) at the tth iteration as well as the following claim (which
is the counterpart of Ma et al. [2018, Claim 224]).
Claim 1. Suppose that m� τK log4m. For some sufficiently small constant c > 0, it holds that
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The corresponding bounds obtained from Ma et al. [2018, Appendix C.4] are listed below:∣∣bHl ν1∣∣ ≤ 0.1 max
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When it comes to the last term of (A.42) concerning ν4, it is seen that
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leaving us with two terms to control.
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where the second inequality follows from Ma et al. [2018, Lemma 48] and standard sub-Gaussian concen-
tration inequalities.

• Regarding ς2, since
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where ‖ · ‖ψ1
and ‖ · ‖ψ2

denote the sub-exponential norm and the sub-Gaussian norm, respectively. In
view of the Bernstein inequality Vershynin [2018, Theorem 2.8.2], we have
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for any τ > 0. Recognizing that
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where the penultimate inequality follows from the hypothesis (A.6b), and the last line holds as long as
m� µ2K log5m, σ

√
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Combining the bounds (A.43) with (A.42) and (A.45), we arrive at∣∣∣bHl h̃t+1
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as long as m � µ2K log9m for some large enough constant C4 � C3. Here, the last inequality invokes the
induction hypotheses (A.6) at the tth iteration, Claim 1, as well as the fact |αt| � 1 (cf. Corollary 1).
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A.9.1 Proof of Claim 1
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Except β3, the bounds of the other terms can be obtained by the same arguments as in Ma et al. [2018,
Appendix C.4.3]; we thus omit the detailed proof but only list the results below:
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where the second inequality follows from Ma et al. [2018, Lemma 50] and standard sub-Gaussian concen-
tration inequalities.
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• For ω2, similar to (A.44), we can invoke the Bernstein inequality Vershynin [2018, Theorem 2.8.2] to
reach
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for any τ ≥ 0. In addition, observe that
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where the last inequality follows from Ma et al. [2018, Lemma 48, 49]. Taking τ = Cσ
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(A.48) for some large enough constant C > 0, one arrives at
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• The above bounds taken collectively imply that: with probability exceeding 1−O
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Putting together the above results, we demonstrate that∣∣∣(bj − b1)
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η

|αt|2
1

logm

[
max

1≤l≤m

∣∣∣bHl h̃t−1∣∣∣+
µ√
m

]
+ (1 + δ)

η

|αt|2
σ

log3m

≤ cC4

(
µ√
m

logm+
σ

logm

)
if η > 0 is sufficiently small, where the last inequality utilizes ‖x̃t−1‖2 � 1 and |αt| � 1 in Lemma 3.

B Analysis under Fourier design: connections between convex and
nonconvex solutions

B.1 Proof outline for Theorem 1
As the empirical evidence (cf. Figure 1) suggests, an approximate nonconvex optimizer produced by a simple
gradient-type algorithm is exceedingly close to the convex minimizer of (1.3). In what follows, we shall start
by introducing an auxiliary nonconvex gradient method, and formalize its connection to the convex program.
Without loss of generality, we assume that ‖h?‖2 = ‖x?‖2 = 1 throughout the proof.
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An auxiliary nonconvex algorithm. Let us consider the iterates obtained by running a variant of
(Wirtinger) gradient descent, as summarized in Algorithm 3. A crucial difference from Algorithm 1 lies
in the initialization stage — namely, Algorithm 3 initializes the algorithm from the ground truth (h?,x?)
rather than a spectral estimate as adopted in Algorithm 1. While initialization at the truth is not practically
implementable, it is introduced here solely for analytical purpose, namely, it creates a sequence of ancillary
random variables that approximate our estimators and are close to the ground truth. This is how we establish
the convergence rate of our estimators.

Algorithm 3 Auxiliary gradient descent for blind deconvolution (for analysis purpose only)

Input: {aj}1≤j≤m, {bj}1≤j≤m, {yj}1≤j≤m, h? and x?.
Initialization: h0 = h? and x0 = x?.
Gradient updates: for t = 0, 1, . . . , t0 − 1 do[

ht+1/2

xt+1/2

]
=

[
ht

xt

]
− η

[
∇hf (ht,xt)
∇xf (ht,xt)

]
, (B.1a)

[
ht+1

xt+1

]
=


√
‖xt+1/2‖

2

‖ht+1/2‖
2

ht+1/2√
‖ht+1/2‖

2

‖xt+1/2‖
2

xt+1/2

 , (B.1b)

where ∇hf(·) and ∇xf(·) represent the Wirtinger gradient (see [Li et al., 2019, Section 3.3] and Ap-
pendix A.2.1) of f(·) w.r.t. h and x, respectively.

Properties of the auxiliary nonconvex algorithm. The trajectory of this auxiliary nonconvex algo-
rithm enjoys several important properties. In the following lemma, the results are stated for the properly
rescaled iterate

z̃t =
(
h̃t, x̃t

)
:=

(
1

αt
ht, αtxt

)
,

with alignment parameter defined by

αt := arg min
α∈C

{∥∥∥∥ 1

α
ht − h?

∥∥∥∥2
2

+
∥∥αxt − x?∥∥2

2

}
.

Lemma 11. Take λ = Cλσ
√
K logm for some large enough constant Cλ > 0. Assume the number of

measurements obeys m ≥ Cµ2K log9m for some sufficiently large constant C > 0, and the noise satisfies
σ
√
K logm ≤ c/ log2m for some sufficiently small constant c > 0. Then, with probability at least 1 −

O
(
m−100 +me−cK

)
for some constant c > 0, the iterates {ht,xt}0<t≤t0 of Algorithm (3) satisfy

dist
(
zt, z?

)
≤ ρdist

(
zt−1, z?

)
+ C5η

(
λ+ σ

√
K logm

)
(B.2a)

max
1≤j≤m

∣∣aH
j

(
x̃t − x?

)∣∣ ≤ C7

√
logm

(
λ+ σ

√
K logm

)
(B.2b)

max
1≤j≤m

∣∣∣bHj h̃t∣∣∣ ≤ C8

(
µ√
m

logm+ σ

)
(B.2c)

max
1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣ ≤ C9σ (B.2d)

for any 0 < t ≤ t0, where ρ = 1− cρη ∈ (0, 1) for some small constant cρ > 0, and we take t0 = m20. Here,
C5, . . ., C9 are constants obeying C7 � C5. In addition, we have

min
0≤t≤t0

∥∥∇f (ht,xt)∥∥
2
≤ λ

m10
. (B.2e)

41



Most of the inequalities of this lemma (as well as their proofs) resemble the ones derived for Algorithm 1 in
Appendix A. It is worth emphasizing, however, that the establishment of the inequality (B.2d) relies heavily
on the idealized initialization (h0,x0) = (h?,x?), and the current proof does not work if the algorithm is
spectrally initialized. The proof of this lemma is deferred to Appendix B.3.

Connection between the approximate nonconvex minimizer and the convex solution. As it
turns out, the above type of features of the nonconvex iterates together with the first-order optimality of the
convex program allows us to control the proximity of the convex minimizer and the approximate nonconvex
optimizer. Before proceeding to develop this idea formally, we first introduce the following operators for
notational convenience. For any z = [zj ]1≤j≤m and any Z ∈ CK×K , we define

A (Z) :=
{
bHj Zaj

}m
j=1

, A∗ (z) =

m∑
j=1

zjbja
H
j ,

T (Z) := A∗A (Z) =

m∑
j=1

bjb
H
j Zaja

H
j . (B.3)

Below are several key conditions on these operators concerned with the interplay between the noise size, the
estimation accuracy of the nonconvex estimate (h,x) and the regularization parameters λ.

Condition 1. The regularization parameter λ satisfies

1. ‖T
(
hxH − h?x?H

)
−
(
hxH − h?x?H

)
‖ < λ/8.

2. ‖A∗ (ξ)‖ = ‖
∑m
j=1 ξjbja

H
j ‖ ≤ cλ, for some small constant c > 0.

Condition 1 requires that the regularization parameter λ dominate the norm of the deviation of T (hxH−
h?x?H) from its mean hxH − h?x?H, and also the norm of the noise operated on by A∗. As can be seen
shortly, these two conditions can be met with high probability when (h,x) is sufficiently close to (h?,x?).

Another critical condition is the following injectivity condition on A.

Condition 2. Let T be the tangent space of hxH. Then for all Z ∈ T , one has

‖A (Z)‖22 ≥
1

16
‖Z‖2F .

When these two conditions hold, the aforementioned intimate connection between approximate nonconvex
minimizer and the convex solution can be formalized in the following crucial lemma.

Lemma 12. Suppose that (h,x) obeys

‖∇f (h,x)‖2 ≤ C
λ

m10
, (B.4a)

for some constants C > 0. Then under Conditions 1 and 2, any minimizer Zcvx of the convex problem (1.3)
satisfies ∥∥hxH −Zcvx

∥∥
F
. ‖∇f (h,x)‖2 .

Proof. See Appendix B.4.

In words, if we can find a point (h,x) that has vanishingly small gradient (cf. (B.4a)) and that satisfies
the additional Conditions 1 and 2, then the matrix hxH is guaranteed to be exceedingly close to the solution
of the convex program. Encouragingly, Lemma 11 hints at the existence of a point along the trajectory of
Algorithm (3) satisfying these conditions (B.5); if this were true, then one could transfer the properties of
the approximate nonconvex optimizer to the convex solution, as a means to certify the statistical efficiency of
convex programming. As we will see soon, this is indeed the case that with Assumption 1, we can prove that
under some mild sample size and noise level conditions, Conditions 1 and 2 would hold with high probability.
To begin with, the following lemma corresponds to the first point in Condition 1.
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Lemma 13. Suppose that the sample complexity satisfies m ≥ Cµ2K log4m for some sufficiently large
constant C > 0. Take λ = Cλσ

√
K logm for some large enough constant Cλ > 0. Then with probability at

least 1−O
(
m−10 +me−CK

)
, we have∥∥T (hxH − h?x?H

)
−
(
hxH − h?x?H

)∥∥ < λ/8,

simultaneously for any (h,x) obeying

‖h‖2 = ‖x‖2 , ‖h− h?‖2 ≤
C5

1− ρ
η
(
λ+ σ

√
K logm

)
, ‖x− x?‖2 ≤

C5

1− ρ
η
(
λ+ σ

√
K logm

)
,

(B.5a)

max
1≤j≤m

∣∣bHj (h− h?)
∣∣ ≤ C9σ and max

1≤j≤m

∣∣aH
j (x− x?)

∣∣ ≤ C7

√
logm

(
λ+ σ

√
K logm

)
, (B.5b)

for some constants C5, C7, C9 > 0.

Proof. See Appendix B.5.

Recall the definition of operator T in (B.3). The lemma above states that for all (h,x) sufficiently close
to (h?,x?), the matrix T

(
hxH − h?x?H

)
is close to the expectation hxH − h?x?H.

Next we turn to the second point in Condition 1.

Lemma 14. Suppose that Asumption 1 holds and m & K log3m. With probability at least 1 − O
(
m−100

)
,

one has

‖A∗ (ξ)‖ =

∥∥∥∥∥
m∑
j=1

ξjbja
H
j

∥∥∥∥∥ . σ
√
K logm.

Proof. See Appendix B.6.

Regarding Condition 2, we have the following lemma.

Lemma 15. Suppose that the sample complexity satisfies m ≥ Cµ2K logm for some sufficiently large
constant C > 0. Then with probability at least 1−O

(
m−10

)
,

‖A (Z)‖22 ≥
1

16
‖Z‖2F , ∀Z ∈ T

holds simultaneously for all T for which the associated point (h,x) obeys (B.5a) and (B.5b). Here, T denotes
the tangent space of hxH.

Proof. See Appendix B.7.

Basically, this lemma reveals that when (h,x) is sufficiently close to (h?,x?), the operator A(·) —
restricted to the tangent space T of hxH — is injective.

Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Armed with this result and the properties about the nonconvex trajectory, we are
ready to establish Theorem 1 as follows. Let t := arg min0≤t≤t0 ‖∇f (ht,xt)‖F, and take (hncvx,xncvx) =(

1

αt
ht, αtxt

)
. By virtue of Lemma 11, we see that (hncvx,xncvx) satisfies — with high probability — the

small gradient property (B.2e) as well as all conditions required to invoke Lemma 12. As a consequence,
invoke Lemma 12 to obtain∥∥Zcvx − hncvxx

H
ncvx

∥∥
F .

1

cinj
‖∇f (hncvx,xncvx)‖F .

λ

m10
. (B.6)

Further, it is seen that∥∥∥hncvx

(
xncvx

)H − h?x?H∥∥∥
F
≤
∥∥∥hncvx

(
xncvx

)H − h?(xncvx

)H∥∥∥
F

+
∥∥∥h?(xncvx

)H − h?x?H∥∥∥
F
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≤ ‖hncvx − h?‖2 ‖xncvx‖2 + ‖h?‖2 ‖xncvx − x?‖2

≤ 2 ‖z?‖2 ·
C5η

(1− ρ) ‖z?‖2

(
λ+ σ

√
K logm

)
=

2C5

cρ

(
λ+ σ

√
K logm

)
, (B.7)

where the penultimate line follows from (B.8a) and the inequality

‖xncvx‖2 ≤ ‖x
?‖2 + ‖xncvx − x?‖2 ≤ ‖z

?‖2 +
C5η

(1− ρ) ‖z?‖2

(
λ+ σ

√
K logm

)
≤ 2 ‖z?‖2 .

Taking (B.6) and (B.7) collectively yields∥∥Zcvx − h?x?H
∥∥

F ≤
∥∥Zcvx − hncvxx

H
ncvx

∥∥
F +

∥∥hncvxx
H
ncvx − h?x?H

∥∥
F

.
λ

m10
+ λ+ σ

√
K logm

. λ+ σ
√
K logm.

This together with the elementary bound
∥∥Zcvx − h?x?H

∥∥ ≤ ∥∥Zcvx − h?x?H
∥∥

F concludes the proof, as long
as the above key lemmas can be justified.

To prove the results also holds for Zcvx,1, we recall that Zcvx,1 is the best rank-1 approximation of Zcvx

and this implies that,

‖Zcvx −Zcvx,1‖F ≤
∥∥Zcvx − hncvxx

H
ncvx

∥∥
F .

λ

m10
.

Hence, repeating the above calculations for Zcvx,1 reveals that (2.8) continues to holds if Zcvx is replaced by
Zcvx,1.

In what follows, we establish the key lemmas stated above.

B.2 Preliminary facts
Before proceeding, there are a couple of immediate consequences of Lemma 11 that will prove useful, which
we summarize as follows.

Lemma 16. Instate the notation and assumptions in Theorem 2. For t ≥ 0, suppose that the hypotheses
(B.9) hold in the first t iterations. Then there exist some constants C5 > 0 such that for any 1 ≤ l ≤ m,

dist
(
zt, z?

)
≤ C5

cρ

(
λ+ σ

√
K logm

)
, (B.8a)

∥∥z̃t,(l) − z?∥∥
2
≤ 2

C5

cρ

(
λ+ σ

√
K logm

)
, (B.8b)

1

2
≤
∥∥x̃t∥∥

2
≤ 3

2
,

1

2
≤
∥∥h̃t∥∥

2
≤ 3

2
, (B.8c)

1

2
≤
∥∥x̃t,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥h̃t,(l)∥∥

2
≤ 3

2
, (B.8d)

1

2
≤
∥∥x̂t,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥ĥt,(l)∥∥

2
≤ 3

2
, (B.8e)∥∥ht∥∥2

2
=
∥∥xt∥∥2

2
=
∥∥ht∥∥

2

∥∥xt∥∥
2

=
∥∥h̃t−1/2∥∥

2

∥∥x̃t−1/2∥∥
2

=
∥∥h̃t∥∥

2

∥∥x̃t∥∥
2
. (B.8f)

In addition, for an integer t > 0, suppose that the hypotheses (B.9) hold in the first t − 1 iterations. Then
there exists some constant C > 0 such that with probability at least 1−O

(
m−100 + e−CK logm

)
, there holds∥∥ẑt − z?∥∥

2
≤ C5

cρ

(
λ+ σ

√
K logm

)
, (B.8g)

∣∣∣∣αt∣∣− 1
∣∣ . C5

cρ

(
λ+ σ

√
K logm

)
, (B.8h)

44



∣∣∣∣αt−1/2αt−1
− 1

∣∣∣∣ . η
C5

cρ

(
λ+ σ

√
K logm

)
, (B.8i)∣∣∣αt−1/2 − αt−1∣∣∣ . η

C5

cρ

(
λ+ σ

√
K logm

)
, (B.8j)

1

2
≤
∣∣∣∣ αt−1αt−1/2

∣∣∣∣ ≤ 3

2
, (B.8k)

1

2
≤
∣∣αt∣∣ ≤ 3

2
. (B.8l)

Proof. The proof follows from the same argument as in the proof of Lemma 3 and Corollary 1, and is thus
omitted here for brevity.

B.3 Proof of Lemma 11
After the introduction of the proof idea in Appendix A, we state a more complete version of Lemma 11 here.

Lemma 17. Take λ = Cλσ
√
K logm for some large enough constant Cλ > 0. Assume the number of

measurements obeys m ≥ Cµ2K log9m for some sufficiently large constant C > 0, and the noise satisfies
σ
√
K logm ≤ c/ log2m for some sufficiently small constant c > 0. Then, with probability at least 1 −

O
(
m−100 +me−cK

)
for some constant c > 0, the iterates {ht,xt}0<t≤t0 of Algorithm (3) satisfy

dist
(
zt, z?

)
≤ ρdist

(
zt−1, z?

)
+ C5η

(
λ+ σ

√
K logm

)
(B.9a)

max
1≤l≤m

dist
(
zt,(l), z̃t

)
≤ C6

σ

log2m
(B.9b)

max
1≤l≤m

∥∥z̃t,(l) − z̃t∥∥
2
. C6

σ

log2m
(B.9c)

max
1≤j≤m

∣∣aH
j

(
x̃t − x?

)∣∣ ≤ C7

√
logm

(
λ+ σ

√
K logm

)
(B.9d)

max
1≤j≤m

∣∣∣bHj h̃t∣∣∣ ≤ C8

(
µ√
m

logm+ σ

)
(B.9e)

max
1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣ ≤ C9σ (B.9f)

for any 0 < t ≤ t0, where ρ = 1− cρη ∈ (0, 1) for some small constant cρ > 0, and we take t0 = m20. Here,
C5, . . ., C9 are constants obeying C7 � C5. In addition, we have

min
0≤t≤t0

∥∥∇f (ht,xt)∥∥
2
≤ λ

m10
. (B.9g)

The claims (B.9a)-(B.9e) are direct consequences of Lemma 5, Lemma 6, the relation (A.21), and Lemma
7. As a result, the remaining steps lie in proving (B.2d) and (B.2e).

B.3.1 Proof of the claim (B.2d)

Recall the definition h̃t := ht/αt. We aim to prove inductively that

max
1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣ ≤ C9σ (B.10)

holds for some constant C9 > 0, provided that the algorithm is initialized at the truth.
It is self-evident that (B.10) holds for the base case (i.e. t = 0) when h0 = h?. Assume for the moment

that (B.10) holds true at the tth iteration. In view of the simple relation between αt+1 and αt+1/2 in (A.3)
and the balancing step (B.1), one has

αt+1 =

√∥∥xt+1/2
∥∥
2∥∥ht+1/2
∥∥
2

αt+1/2, and ht+1 =

√∥∥xt+1/2
∥∥
2∥∥ht+1/2
∥∥
2

ht+1/2.
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It then follows that ht+1/αt+1 = ht+1/2/αt+1/2 and, therefore,

αt+1/2

αt

(
ht+1

αt+1
− h?

)
=
αt+1/2

αt

(
ht+1/2
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)
(i)
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1
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(
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(
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))
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)
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=
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H
j
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)
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H
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H
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,

(B.11)

where (i) comes from the gradient update rule (B.1) and (ii) is due to the expression (A.7).

• Applying a similar argument as for Ma et al. [2018, Equation (219)] yields∣∣bHl ν1∣∣ ≤ 0.1 max
1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣ .
• The ν2 can be controlled as follows∣∣bHl ν2∣∣ ≤ 0.2 max

1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣+ C logm max
0≤l≤m−τ,1≤j≤τ

∣∣∣(bl+j − bl+1)
H (
h̃t − h?

)∣∣∣
≤ 0.2 max

1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣+ (C logm)C11
σ

log3m
.

The first inequality can be derived via a similar argument as in Ma et al. [2018, Equation (221)] (the
detailed proof is omitted here for the sake of simplicity), whereas the second inequality results from the
following claim.

Claim 2. For some constant C11 � C7, we have

max
0≤l≤m−τ,1≤j≤τ

∣∣∣(bl+j − bl+1)
H (
h̃t − h?

)∣∣∣ ≤ C11
σ

log3m
.

Proof. See Appendix B.3.3.

• When it comes to the term ν3, we observe that
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log2m
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.

Here, the penultimate inequality follows from the incoherence condition (B.9d) and Lemma 2, whereas
the last inequality follows from the induction hypothesis (B.9d).

• Finally, we turn to the term ν4. Clearly, it is of the same form as ν4 in (A.42); therefore, via the same
line of analysis, one can deduce the following bound (similar to (A.45))
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where the last inequality invokes (B.9d).

With all the preceding results in place, we can combine them to demonstrate that∣∣∣∣∣αt+1/2
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for some constant C > 0 and sufficiently small constant c > 0. Here (i) uses triangle inequality and (B.8l)
and the proviso that m� µ2K log5m and σ

√
K log4m� 1.

Finally, making use of (B.8i) we obtain
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where C > 0 is some constant and the last inequality holds since c is sufficiently small.
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B.3.2 Proof of the claim (B.2e)

To prove (B.2e), we need to show that the objective value decreases as the algorithm progresses.
Claim 3. If the iterates satisfy the induction hypotheses (B.9a)-(B.9e) in the tth iteration, then with prob-
ability exceeding 1−O

(
m−100 + e−CK logm

)
,

f
(
ht+1,xt+1

)
≤ f

(
ht,xt

)
− η

2

∥∥∇f (ht,xt)∥∥2
2
. (B.12)

Proof. See Appendix B.3.4.

When summed over t, the inequality in Lemma 3 leads to the following telescopic sum

f
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This further gives
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, (B.13)

where we have assumed that z0 = z?.
We then proceed to control f (z?)−f (zt0). From the mean value theorem (cf. Ma et al. [2018, Appendix

D.3.1]), we can write
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.

The last inequality in the above formula invokes Lemma 4, whose assumptions are verified in the proof of
Claim 3 (see Appendix (B.3.4)). Further, the relations (B.24) and (B.18) in the proof of Claim 3 lead to
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.
(
λ+ σ

√
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. (B.14)

It then follows from (B.13) and (B.14) that
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B.3.3 Proof of Claim 2

We aim to prove by induction that there exists some constant C11 > 0 such that
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log3m
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Apparently, (B.15) holds when t = 0 given that h0 = h?. In what follows, we shall assume that (B.15) holds
true at the tth iteration, and examine this condition for the (t+ 1)th iteration.

Similar to the derivation of (B.11), we have the following decomposition
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leaving us with several terms to control.

• For ν1, we have that∣∣∣(bl − b1)
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where the second inequality follows from Ma et al. [2018, Lemma 50] and the last inequality utilizes the
following consequence of (B.9d) and Lemma 38:
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• With regards to ν2, we invoke the induction hypothesis (B.9d) at the tth iteration to obtain∣∣∣(bl − b1)
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where the second inequality applies Ma et al. [2018, Lemma 50] and (2.1), and the last inequality results
from (B.9d) and (F.1).

• Finally, since (bl − b1)
H
ν3 is of the same form as the quantity β3 in (A.47), we can apply the analysis

leading to (A.49) to derive
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With the preceding results in hand, we have∣∣∣∣∣αt+1/2
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for some constant C > 0 and some sufficiently small constant c > 0. Here, the relation (i) comes from the
triangle inequality, (B.8l), as well as the consequence of (B.8c) and (B.8l)
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Finally, by (B.8i) we obtain
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where C > 0 is some constant. Here, the last inequality holds as long as c is sufficiently small.

B.3.4 Proof of Claim 3

Before proceeding, we note that
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Another fact of use is that
∇2f (h,x) = ∇2freg-free (h,x) + λI4K .

50



Letting

βt =
αt

|αt|
, h

t
= 1

βt
ht, and xt = βtxt,

we can write ∥∥∥∇f(ht,xt)∥∥∥
2

=

∥∥∥∥∥
[
βt∇hfreg-free (ht,xt)
1

βt
∇xfreg-free (ht,xt)

]
+ λ

[
ht

βt

βtxt

]∥∥∥∥∥
2

=

∥∥∥∥[ ∇hfreg-free (ht,xt)
∇xfreg-free (ht,xt)

]
+ λ

[
ht

xt

]∥∥∥∥
2

=
∥∥∇f (ht,xt)∥∥

2
, (B.17)

where the first inequality is due to (B.16), and the second inequality comes from the simple fact that βtβt = 1
(by definition of βt).
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where ẑ is a point lying between zt − η∇f
(
zt
)
and zt. Here, (i) resorts to the gradient update rule (B.1);

(ii) utilizes the relation (B.16); (iii) comes from the mean value theorem Ma et al. [2018, Appendix D.3.1];
(iv) follows from Lemma 4 (which we shall verify shortly); (v) holds true for sufficiently small η > 0; and the
last equality follows from the identity (B.17). Therefore, it only remains to verify the conditions required to
invoke Lemma 4 in Step (iv). In particular, we would need to justify that both zt and zt− η∇f
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where the last inequality comes from (B.8a) and (B.8h). Further,
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where the last inequality follows from (B.8h), (B.9d) and Lemma 38. Similarly, one has
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1≤j≤m

∣∣∣bHj h̃t∣∣∣
≤
∣∣∣∣αt∣∣− 1

∣∣ max
1≤j≤m

∣∣∣∣bHj htαt
∣∣∣∣+ max

1≤j≤m

∣∣∣bHj h̃t∣∣∣
≤ 2 max

1≤j≤m

∣∣∣bHj h̃t∣∣∣ (B.20)

.
µ√
m

logm+ σ, (B.21)

where the last inequality comes from (B.9e). Given that zt satisfies the conditions in Lemma 4, we can
invoke Lemma 4 to demonstrate that∥∥∇hf (zt)−∇hf (z?)

∥∥
2
≤ 4

∥∥zt − z?∥∥
2
. (B.22)
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• Next, we move on to show that zt − η∇f
(
zt
)
also satisfies the conditions of Lemma 4. To begin with,∥∥zt − η∇f (zt)− z?∥∥

2
≤
∥∥zt − z?∥∥

2
+ η

∥∥∇f (zt)−∇f (z?)
∥∥
2

+ η ‖∇f (z?)‖2 . (B.23)

We observe that

‖∇f (z?)‖2 ≤ ‖∇fclean (z?) ‖2 + ‖A∗ (ξ)h?‖2 + ‖A∗ (ξ)x?‖2 + λ ‖h?‖2 + λ ‖z?‖2
. λ+ σ

√
K logm. (B.24)

Taking (B.24), (B.22), (B.18) and (B.23) collectively, one arrives at∥∥zt − η∇f (zt)− z?∥∥
2
. λ+ σ

√
K logm.

With regards to the incoherence condition w.r.t. aj , we have

max
1≤j≤m

∣∣aH
j

(
xt − η∇xf

(
zt
)
− x?

)∣∣
≤ max

1≤j≤m

∣∣aH
j

(
xt − x?

)∣∣+ η max
1≤j≤m

∣∣aH
j∇xf

(
zt
)∣∣

≤ max
1≤j≤m

∣∣aH
j

(
xt − x?

)∣∣+ η

(
max

1≤j≤m

∣∣∣aH
j∇xf

(
zt − z̃t,(l)

)∣∣∣+ max
1≤j≤m

∣∣∣aH
j∇xf

(
z̃t,(l)

)∣∣∣)
≤ C

√
logm

(
λ+ σ

√
K logm

)
+ 4η

(
10
√
K × 4 max

1≤j≤m

∥∥∥z̃t − z̃t,(l)∥∥∥
2

+ 20
√

logm max
1≤j≤m

∥∥∥∇xf (z̃t,(l))∥∥∥
2

)
,

(B.25)

where the last inequality follows from (B.19) for some constant C > 0, (B.22) and Lemma 38. Further,
it is self-evident that z̃t,(l) satisfies the conditions of Lemma 4, so that we have∥∥∥∇xf (z̃t,(l))∥∥∥

2
≤
∥∥∥∇xf (z̃t,(l))−∇xf (z?)

∥∥∥
2

+ ‖∇xf (z?)‖2

≤ 4
∥∥∥z̃t,(l) − z?∥∥∥

2
+ C

(
λ+ σ

√
K logm

)
≤ 4

(∥∥∥z̃t,(l) − z̃t∥∥∥
2

+
∥∥z̃t − z?∥∥

2

)
+ C

(
λ+ σ

√
K logm

)
,

where the second inequality invokes Lemma 4 and (B.24). This together with (B.25) and (B.9) gives

max
1≤j≤m

∣∣aH
j

(
xt − η∇xf

(
zt
)
− x?

)∣∣ .√logm
(
λ+ σ

√
K logm

)
.

For the other incoherence condition w.r.t. bj , we can invoke similar argument to show that

max
1≤j≤m

∣∣∣bHj (ht − η∇hf (zt)− h?)∣∣∣
≤ max

1≤j≤m

∣∣∣bHj (ht − h?)∣∣∣+ η max
1≤j≤m

∣∣bHj∇hf (zt)∣∣
≤ max

1≤j≤m

∣∣∣bHj (ht − h?)∣∣∣+ η max
1≤j≤m

∣∣∣∣∣bHj
(

m∑
l=1

(
bHl h̃

tx̃t,Hal − yl
)
bla

H
l x

t + λh
t

)∣∣∣∣∣
≤ max

1≤j≤m

∣∣∣∣∣bHj
(

ht

αt/ |αt|
− h

t

αt

)∣∣∣∣∣+ max
1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣
+ η

λ ∣∣αt∣∣ max
1≤j≤m

∣∣∣bHj h̃t∣∣∣+
∣∣αt∣∣−1 max

1≤j≤m

∣∣∣∣∣bHj
(

m∑
l=1

(
bHl h̃

tx̃t,Hal − yl
)
bla

H
l x̃

t

)∣∣∣∣∣︸ ︷︷ ︸
=:τ


≤
∣∣∣∣αt∣∣− 1

∣∣ max
1≤j≤m

∣∣∣bHj h̃t∣∣∣+ max
1≤j≤m

∣∣∣bHj (h̃t − h?)∣∣∣+ η

(
2λ max

1≤j≤m

∣∣∣bHj h̃t∣∣∣+ 2τ

)
. (B.26)
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Here, the last inequality utilizes the fact ‖bj‖2 =
√
K/m and (B.8h). The quantity τ can be controlled

by using the same analysis as Appendix A.9. Specifically,

τ = max
1≤j≤m

∣∣bHj∇hfreg-free (z̃t)∣∣
≤ max

1≤j≤m

(∣∣bHj ν1∣∣+
∣∣bHj ν2∣∣+

∣∣bHj ν3∣∣+
∣∣bHj ν4∣∣+ ‖x?‖22

∣∣∣bHj h̃t∣∣∣)
.

µ√
m

logm+ σ,

where {νi}4i=1 are defined in (A.42), and the last inequality is a direct consequence of Appendix A.9.
Finally, continue the bound (B.26) to demonstrate that

max
1≤j≤m

∣∣∣bHj (ht − η∇hf (zt)− h?)∣∣∣
.
C5

cρ

(
λ+ σ

√
K logm

)
C8

(
µ√
m

logm+ σ

)
+ C9σ + η

(
2C8λ

(
µ√
m

logm+ σ

)
+ 2

(
µ√
m

logm+ σ

))
.

µ√
m

logm+ σ,

where the penultimate inequality is due to (B.8h), (B.9e) and (B.2d).

B.4 Proof of Lemma 12
Before proceeding, let us introduce some additional convenient notation. Define

Z := hxH, (B.27)

and denote by T the tangent space of Z, namely,

T :=
{
X : X = hvH + uxH,v ∈ CK ,u ∈ CK

}
. (B.28)

Further, define two associated projection operators as follows

PT (X) :=
1

‖h‖22
hhHX +

1

‖x‖22
XxxH − 1

‖h‖22‖x‖22
hhHXxxH, (B.29a)

PT⊥ (X) :=

(
I − 1

‖h‖22
hhH

)
X

(
I − 1

‖x‖22
xxH

)
. (B.29b)

We further introduce a key lemma below. It proves useful in connecting the first order optimality
conditions of convex and nonconvex formulation.

Lemma 18. Under the assumptions of Lemma 12, one has

T
(
hxH − h?x?H

)
−A∗ (ξ) = − λ

‖h‖2 ‖x‖2
hxH +R,

where R ∈ CK×K is some residual matrix satisfying

‖PT (R)‖F ≤ 2 ‖∇f (h,x)‖2 and ‖PT⊥ (R)‖ ≤λ/2.

Proof. See Appendix B.4.1.

With these supporting lemmas in hand, we are ready to prove Lemma 12. Suppose Zcvx is the minimizer
of (1.3).
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1. Let ∆ := Zcvx − hxH. The optimality of Zcvx yields that∥∥A (hxH + ∆− h?x?H
)
− ξ
∥∥2
2

+ 2λ
∥∥hxH + ∆

∥∥
∗ ≤

∥∥A (hxH − h?x?H
)
− ξ
∥∥2
2

+ 2λ
∥∥hxH

∥∥
∗ .

By simple calculation, it leads to

‖A (∆)‖22 ≤ −
〈
T
(
hxH − h?x?H

)
−A∗ (ξ) ,∆

〉
+ 2λ

∥∥hxH
∥∥
∗ − 2λ

∥∥hxH + ∆
∥∥
∗ .

The convexity of the nuclear norm gives that for any W ∈ T⊥ with ‖W ‖ ≤ 1, there holds∥∥hxH + ∆
∥∥
∗ ≥

∥∥hxH
∥∥
∗ +

〈
pqH +W ,∆

〉
,

where we denote by p := h/ ‖h‖2 and q := x/ ‖x‖2. We choose W such that 〈W ,∆〉 = ‖PT⊥ (∆)‖∗.
Then, combining the above two equations gives rise to

0 ≤ ‖A (∆)‖22 ≤ −
〈
T
(
hxH − h?x?H

)
−A∗ (ξ) ,∆

〉
− 2λ

〈
pqH +W ,∆

〉
= −

〈
T
(
hxH − h?x?H

)
−A∗ (ξ) ,∆

〉
− 2λ

〈
pqH,∆

〉
− 2λ ‖PT⊥ (∆)‖∗

(i)
= −〈R,∆〉 − 2λ ‖PT⊥ (∆)‖∗
= −〈PT (R) ,∆〉 − 〈PT⊥ (R) ,∆〉 − 2λ ‖PT⊥ (∆)‖∗ , (B.30)

where R in (i) is defined in Lemma 18. Hence,

− ‖PT (R)‖F ‖PT (∆)‖F − ‖PT⊥ (R)‖ ‖PT⊥ (∆)‖∗ + 2λ ‖PT⊥ (∆)‖∗
≤〈PT (R) ,∆〉+ 〈PT⊥ (R) ,∆〉+ 2λ ‖PT⊥ (∆)‖∗ ≤ 0.

Lemma 18 gives ‖PT⊥ (R)‖ ≤ λ/2, then we have

‖PT (R)‖F ‖PT (∆)‖F ≥ −‖PT⊥ (R)‖ ‖PT⊥ (∆)‖∗ + 2λ ‖PT⊥ (∆)‖∗ ≥
3λ

2
‖PT⊥ (∆)‖∗ ,

and it immediately reveals that

‖PT⊥ (∆)‖∗ ≤
2

3λ
‖PT (R)‖F ‖PT (∆)‖F

≤ 4

3λ
‖∇f (h,x)‖2 ‖PT (∆)‖F

≤ C 4

3m10
‖PT (∆)‖F ,

where the second inequality invokes Lemma 18. We then arrive at

‖PT⊥ (∆)‖F ≤ ‖PT⊥ (∆)‖∗ ≤ C
4

3m10
‖PT (∆)‖F ≤ ‖PT (∆)‖F . (B.31)

2. Next, we return to (B.30) to deduce that

‖A (∆)‖22 ≤ −〈PT (R) ,∆〉 − 〈PT⊥ (R) ,∆〉 − 2λ ‖PT⊥ (∆)‖∗
≤ ‖PT (R)‖F ‖PT (∆)‖F + ‖PT⊥ (R)‖ ‖PT⊥ (∆)‖∗ − 2λ ‖PT⊥ (∆)‖∗ (B.32)
(i)
≤ ‖PT (R)‖F ‖PT (∆)‖F −

3λ

2
‖PT⊥ (∆)‖∗

≤ ‖PT (R)‖F ‖PT (∆)‖F (B.33)
(ii)
≤ 2 ‖∇f (h,x)‖2 ‖∆‖F , (B.34)

where (i) and (ii) come from Lemma 18.
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3. For the final step, we turn to lower bound ‖A (∆)‖F. One has

‖A (∆)‖2 = ‖A (PT (∆)) +A (PT⊥ (∆))‖2
≥ ‖A (PT (∆))‖2 − ‖A (PT⊥ (∆))‖2
≥ ‖PT (∆)‖F /4−

√
2K logK + γ logm ‖PT⊥ (∆)‖F , (B.35)

where the last inequality comes from Lemma 15 and Lemma 1. Since (B.31) gives√
2K logK + γ logm ‖PT⊥ (∆)‖F ≤

√
2K logK + γ logm× C 4

3m10
‖PT (∆)‖F ≤

1

8
‖PT (∆)‖F ,

as long as m� K, (B.35) yields

‖A (∆)‖2 ≥
1

8
‖PT (∆)‖F .

In addition, (B.31) implies

‖∆‖F ≤ ‖PT (∆)‖F + ‖PT⊥ (∆)‖F ≤ 2 ‖PT (∆)‖F .

Consequently,

‖A (∆)‖2 ≥
1

8
‖PT (∆)‖F ≥

1

16
‖∆‖F . (B.36)

Combining (B.33) and (B.36), we have

1

256
‖∆‖2F ≤ ‖A (∆)‖22 ≤ 2 ‖∇f (h,x)‖2 ‖∆‖F ,

and therefore
‖∆‖F . ‖∇f (h,x)‖2 .

B.4.1 Proof of Lemma 18

Recall the definition of T debias in (B.3). Letting

p =
1

‖h‖2
h and q =

1

‖x‖2
x (B.37)

and rearranging terms, we can write

h?x?H + T debias
(
h?x?H − hxH

)
+A∗ (ξ) = hxH + λpqH +R (B.38)

for some matrix R. In addition, in view of the small gradient assumption (B.4a), one has[
h?x?H + T debias

(
h?x?H − hxH

)
+A∗ (ξ)

]
x = hxHx+ λh− r1 (B.39a)[

h?x?H + T debias
(
h?x?H − hxH

)
+A∗ (ξ)

]H
h = xhHh+ λx− r2 (B.39b)

for some vectors r1, r2 ∈ CK obeying

‖r1‖2 =
∥∥λh− (T (h?x?H − hxH

)
+A∗ (ξ)

)
x
∥∥
2
≤ ‖∇f (h,x)‖2 ≤ C

λ

m10
, (B.40a)

‖r2‖2 =
∥∥∥λx− (T (h?x?H − hxH

)
+A∗ (ξ)

)H
h
∥∥∥
2
≤ ‖∇f (h,x)‖2 ≤ C

λ

m10
. (B.40b)

In what follows, we make of these properties to control the size of R.
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1. We start by upper bounding ‖PT (R)‖F as follows

‖PT (R)‖F =
∥∥ppHR (IK − qqH)+RqqH

∥∥
F

≤ ‖p‖2
∥∥pHR∥∥

2

∥∥IK − qqH∥∥+ ‖Rq‖2 ‖q‖2
≤
∥∥pHR∥∥

2
+ ‖Rq‖2 ,

where p and q are unit vectors defined in (B.37). Recognizing that ‖h‖2 = ‖x‖2 (cf. (B.5a)), we can use
(B.38) and (B.39) to obtain

RHp = − r2
‖h‖2

+ λ
‖x‖2
‖h‖2

q − λ
‖h‖2
‖x‖2

q = − r2
‖h‖2

and Rq = − r1
‖x‖2

.

These together with (B.40) yield

‖PT (R)‖F ≤
∥∥pHR∥∥

2
+ ‖Rq‖2 ≤ 2 ‖∇f (h,x)‖2 ≤ 2C

λ

m10
. (B.41)

2. We them move on to control PT⊥ (R). Continue the relation (B.38) to derive

h?x?H + T debias
(
h?x?H − hxH

)
+A∗ (ξ)− PT (R) = p

(
‖h‖2 ‖x‖2 + λ

‖h‖2
‖x‖2

)
qH + PT⊥ (R) , (B.42)

where we have used the assumption ‖h‖2 / ‖x‖2 = 1 (cf. (B.5a)). Combine this with Lemma 13, Lemma
14 and (B.41) to derive∥∥T debias

(
h?x?H − hxH

)
+A∗ (ξ)− PT (R)

∥∥ ≤ ∥∥T debias
(
h?x?H − hxH

)∥∥+ ‖A∗ (ξ)‖+ ‖PT (R)‖F

≤ λ

8
+
λ

8
+ 2C

λ

m10

<
λ

2
,

where the last inequality invokes the assumption (B.2e). Invoking (B.42) and Weyl’s inequality give

σi

[
p

(
‖h‖2 ‖x‖2 + λ

‖h‖2
‖x‖2

)
qH + PT⊥ (R)

]
≤ σi

(
h?x?H

)
+
∥∥T debias

(
h?x?H − hxH

)
+A∗ (ξ)− PT (R)

∥∥
< λ/2,

for K ≥ i ≥ 2. Additionally, when i = 1, we have

σ1

[
p

(
‖h‖2 ‖x‖2 + λ

‖h‖2
‖x‖2

)
qH
]

= ‖h‖2 ‖x‖2 + λ
‖h‖2
‖x‖2

≥ λ/2.

This indicates that at least K − 1 singular values of p (‖h‖2 ‖x‖2 + λ ‖h‖2 / ‖x‖2) qH + PT⊥ (R) are no
larger than λ/2, and these singular values cannot correspond to the direction of pqH. As a consequence,
we conclude that

‖PT⊥ (R)‖ ≤ λ/2.

B.5 Proof of Lemma 13
For notational convenience, we define T debias by subtracting the expectation from T as follows:

T debias (Z) := T (Z)−Z = (A∗A− I) (Z) =

m∑
j=1

bjb
H
j Zaja

H
j −Z.

For any fixed vectors h and x, we make note of the following decomposition

hxH − h?x?H = (∆h + h?) (∆x + x?)
H − h?x?H
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= h?∆H
x + ∆hx

?H + ∆h∆H
x,

which together with the triangle inequality gives∥∥T debias
(
hxH − h?x?H

)∥∥ ≤ ∥∥T debias
(
h?∆H

x

)∥∥︸ ︷︷ ︸
=:β1

+
∥∥T debias

(
∆hx

?H
)∥∥︸ ︷︷ ︸

=:β2

+
∥∥T debias

(
∆h∆H

x

)∥∥︸ ︷︷ ︸
=:β3

.

In what follows, we shall upper bound β1, β2 and β3 separately.

1. For any fixed x, the quantity β1 is concerned with a matrix that can be written explicitly as follows

T debias
(
h?∆H

x

)
=

m∑
j=1

bjb
H
j h

?∆H
x

(
aja

H
j − IK

)
.

Consequently, for any fixed unit vectors u, v ∈ CK one has

uHT debias
(
h?∆H

x

)
v =

m∑
j=1

(
uHbjb

H
j h

?∆H
xaja

H
j v − uHbjb

H
j h

?∆H
xv
)
,

which is essentially a sum of independent variables. Letting r := λ+σ
√
K logm and C4 := 10 max {C1, C3, 1},

we can deduce that

m∑
j=1

(
uHbjb

H
j h

?∆H
xaja

H
j v 1{|∆H

xaj |≤C4r
√
logm}︸ ︷︷ ︸

=:zj

−uHbjb
H
j h

?∆H
xv

)

=

m∑
j=1

(zj − E [zj ]) +

m∑
j=1

(
E
[
uHbjb

H
j h

?∆H
xaja

H
j v 1{|∆H

xaj |≤C4r
√
logm}

]
− uHbjb

H
j h

?∆H
xv
)

=

m∑
j=1

(zj − E [zj ]) +

m∑
j=1

(
E
[
uHbjb

H
j h

?∆H
xaja

H
j v 1{|∆H

xaj |≤C4r
√
logm}

]
− E

[
uHbjb

H
j h

?∆H
xaja

H
j v
])

=

m∑
j=1

(zj − E [zj ])︸ ︷︷ ︸
=:ω1

−
m∑
j=1

E
[
uHbjb

H
j h

?∆H
xaja

H
j v 1{|∆H

xaj |>C4r
√
logm}

]
︸ ︷︷ ︸

=:ω2

.

• The term ω2 can be controlled by Cauchy-Schwarz as follows

|ω2| =

∣∣∣∣∣
m∑
j=1

E
[
uHbjb

H
j h

?∆H
xaja

H
j v 1{|∆H

xaj |>C4r
√
logm}

] ∣∣∣∣∣
(i)
≤

m∑
j=1

√
E
[∣∣uHbjbHj h

?∆H
xaja

H
j v
∣∣2]P [|∆H

xaj | > C4r
√

logm
]

(ii)
≤

m∑
j=1

∣∣uHbjb
H
j h

?
∣∣√√√√(2 |∆H

xv|
2

+ ‖∆x‖22 ‖v‖
2
2

)
2 exp

(
−C

2
4r

2 logm

2 ‖∆x‖22

)

≤
m∑
j=1

∣∣uHbjb
H
j h

?
∣∣√6 ‖∆x‖22 exp (−50 logm)

(iii)
≤

m∑
j=1

(∣∣uHbj
∣∣2 +

∣∣bHj h?∣∣2) √6 ‖∆x‖2
2m25

(B.43)

(iv)
≤
(
1 + µ2

) √6 ‖∆x‖2
2m25
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(v)
≤
‖∆x‖2
m24

.

Here, (i) follows from the Cauchy-Schwarz inequality, and (ii) comes from the property of sub-Gaussian
variable ∆H

xaj and

E
[∣∣uHbjb

H
j h

?∆H
xaja

H
j v
∣∣2] =

∣∣uHbjb
H
j h

?
∣∣2 E [∣∣∆H

xaja
H
j v
∣∣2]

=
∣∣uHbjb

H
j h

?
∣∣ (2

∣∣∆H
xv
∣∣2 + ‖∆x‖22 ‖v‖

2
2

)
, (B.44)

where the last line is due to the property of Gaussian distributions. In addition, (iii) is a consequence
of the elementary inequality |ab| ≤ (|a|2 + |b|2)/2, (iv) comes from the incoherence condition (2.1)
and

∑m
j=1

∣∣uHbj
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Therefore, by invoking Hoeffding’s inequality (cf. Vershynin [2018, Theorem 2.6.2]) we reach
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for any t ≥ 0. Setting t = Cµr
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P

∣∣∣∣∣
m∑
j=1

zj − E [zj ]

∣∣∣∣∣ ≥ Cµr
√
K logm√
m

 ≤ 2 exp (−10K logm) . (B.45)

Next, we define Nx to be an ε1-net of Bx
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uniformly for any x ∈ Nx, u,v ∈ N0. Here, the penultimate inequality comes from (B.43) and (B.45).
For any x obeying the assumption maxj
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with probability exceeding 1−O
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2. We now move on to β2, for which we have a similar decomposition as follows
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where (i) follows from Cauchy-Schwarz inequality, (ii) comes from the property of sub-Gaussian
variable
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Hoeffding’s inequality Vershynin [2018, Theorem 2.6.3] tells us that
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Invoking a similar covering argument, we know that with probability exceeding 1−O
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where the penultimate inequality comes from (B.49) and (B.50). Next, let us define
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holds uniformly over h ∈ Bh (C1r), where the last inequality is due to the choices ε1 = r/ (m logm),
ε2 = 1/ (m logm) and r = λ+ σ

√
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3. Finally, we turn attention to β3. Observe that for any fixed h and x, one has
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Therefore, invoking Hoeffding’s inequality (cf. Vershynin [2018, Theorem 2.6.3]) reveals that
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for any t ≥ 0. Setting t = Cµr
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where the last inequality arises from (B.66). This further leads to∣∣∣uHT debias
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)
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,

where the last inequality follows from (B.54) and (B.55). As a consequence, for any point (h,x)
satisfying (B.5), we have, with probability exceeding 1−O

(
m−10 +me−CK

)
, that∥∥∥T debias

(
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To finish up, combining the bounds obtained in (B.47), (B.52) and (B.56), we arrive at∥∥T debias
(
hxH − h?x?H

)∥∥ ≤ λ

50
+

λ

50
+

λ

50
<
λ

8
.

B.6 Proof of Lemma 14
We intend to invoke Koltchinskii et al. [2011, Proposition 2] to bound the spectral norm of the random
matrix of interest. Set Zi = ξibia

H
i . Letting ‖ · ‖ψ1 (resp. ‖ · ‖ψ2) denoting the sub-exponential norm of a

random variable Vershynin [2018, Chapter 2], we have

BZ :=
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m
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Here, we have used the assumption that ‖ξj‖ψ2
. σ, as well as the simple facts that ‖bj‖2 =

√
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.
√
K (cf. Vershynin [2018, Theorem 3.1.1]). In addition, simple calculation yields∥∥∥∥∥∥
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which rely on the facts that E
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= Ik. As a result,
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we can apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive∥∥∥∥∥∥

m∑
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ξjbja
H
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)
logm . σ

√
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with probability exceeding 1−O(m−20), where the last inequality holds as long as m & K log3m.

B.7 Proof of Lemma 15
By the definition of T (cf. (B.28)), any Z ∈ T takes the following form

Z = huH + vxH

for some u,v ∈ CK . Since this is an underdetermined system of equations, there might exist more than one
possibilities of (h,x) that enable and are compatible with this decomposition. Here, we shall take a specific
choice among them as follows

(h,x) := arg min
(h̃,x̃)

{
1

2

∥∥h̃∥∥2
2

+
1

2
‖x̃‖22 | Z = h̃uH + vx̃H for some u and v

}
. (B.58)

As can be straightforwardly verified, this special choice enjoys the following property

hHv = uHx,

which plays a crucial role in the proof.
The proof consists of two steps: (1) showing that

‖Z‖2F ≤ 8
(
‖u‖22 + ‖v‖22

)
, (B.59)

and (2) demonstrating that

‖A (Z)‖22 ≥
1

2

(
‖u‖22 + ‖v‖22

)
. (B.60)

The first claim (B.59) can be justified in the same way as Chen et al. [2020b, Equation (81)]; we thus omit
this part here for brevity.

It then boils down to justifying the second claim (B.60), towards which we first decompose

‖A (Z)‖22 = ‖A (Z)‖22 − ‖Z‖
2
2︸ ︷︷ ︸

=:α1

+ ‖Z‖22︸ ︷︷ ︸
=:α2

. (B.61)

By repeating the same argument as in Chen et al. [2020b, Appendix C.3.1, 2(a)], we can lower bound α2 by

α2 ≥
∥∥h?uH

∥∥2
F +

∥∥vx?H∥∥2F − 1

50

(
‖u‖22 + ‖v‖22

)
.

We then turn attention to controlling α1. Letting ∆h = h− h? and ∆x = x− x?, we can write

huH + vxH = (h? + ∆h)uH + v (x? + ∆x)
H
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= h?uH + ∆hu
H + vx?H + v∆H

x.

This implies that α1 can be expanded as follows

α1 =
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2
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,

thereby motivating us to cope with these terms separately.

• Regarding γ1, it is easily seen that

|γ1| ≤ ‖PTA∗APT − PT ‖ ·
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F
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100
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,

where the last inequality is obtained by invoking Li et al. [2019, Lemma 5.12].

• When it comes to γ2, we observe that
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)
under our constraints on the sizes of ∆h and ∆x.

• The term γ3 can be further decomposed into four terms, which we control separately.
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where the (i) and (ii) follow from the Cauchy-Schwarz inequality and (B.5a) that
∥∥∆H

x
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2
. λ +
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√
K logm ≤ 1/200; (iii) comes from the fact that
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≤ 1

100
‖u‖2 ‖v‖2 ,

where (i) holds for the same reason as Step (ii) in (B.62); (ii) arises due to the identity
∑m
j=1

∣∣bHj v∣∣2 =

‖v‖22 and (B.5b); and the last inequality relies on the following claim.
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holds uniformly for any u.

Proof. See Appendix B.7.1.

3. The next term we shall control is

〈
A
(
h?uH

)
,A
(
∆hu

H
)〉
−
〈
h?uH,∆hu

H
〉

=

m∑
j=1

(
bHj h

?
) (
bHj ∆h

) (∣∣aH
j u
∣∣2 − ‖u‖22) .

By virtue of the Bernstein inequality Vershynin [2018, Theorem 2.8.2], we have
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Additionally, define r := λ+σ
√
K logm, and letNh be an ε1-net of Bh
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holds uniformly for all (h,u) ∈ Nh ×N0. As a result, for any (h,u) ∈ Nh ×N0, there holds∣∣〈A (h?uH
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Combining the above results, we can continue the relation (B.61) to conclude that
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B.7.1 Proof of Claim 4

We start by defining

η :=
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Concentration. In view of the Bernstein inequality (cf. Vershynin [2018, Theorem 2.8.2]), we have
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Union bound. Next, define N0 to be an ε0-net of the unit sphere SK−1 :=
{
u ∈ CK : ‖u‖2 = 1

}
, which

can be chosen to obey Vershynin [2018, Corollary 4.2.13]
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Approximation. Our goal is then to extend the above concentration result to cover all h ∈ Bh, u ∈ SK−1
simultaneously, towards which we invoke the standard epsilon-net argument. For any u ∈ SK−1, let u0 ∈ N0

be a point satisfying ‖u− u0‖2 ≤ ε0. Then straightforward calculation gives∣∣∣∣∣∣
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2

∣∣∣+ ‖u0 − u‖2 (‖u0‖2 + ‖u‖2)
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(iii)
≤
∣∣(∥∥A (h?uH

)∥∥
2

+
∥∥A (h?uH

0

)∥∥
2

) ∥∥A (h?uH
)
−A

(
h?uH

0

)∥∥
2

∣∣+ ε0

. ‖A‖2 (‖h?‖2 ‖u‖2 + ‖h?‖2 ‖u0‖2) ‖h?‖2 ‖u− u0‖2 + ε0
(iv)
≤ (4K logK + 20 logm+ 1) ε0,

where (i) comes from
∑m
j=1

∣∣bHj h?∣∣2 = ‖h?‖22; (ii) and (iii) are due to triangle inequality; (iv) follows from
the following bound

‖A‖ ≤
√

2K logK + 10 logm, (B.66)

which holds with probability at least 1 − O
(
m−10

)
according to Lemma 1. Letting ε0 = r/ (m logm) with

r = λ+ σ
√
K logm, we note it satisfies

1−
(

1 +
2

ε0

)2K

e−4K logm ≥ 1−O
(
m−10

)
.

Putting all this together. Therefore, we conclude that: with probability at least 1−O
(
m−10

)
, one has

|η| ≤ 4 ‖Bh?‖∞
√

2K logm+ 16 ‖Bh?‖2∞K logm+ (4K logK + 20 logm+ 1) ε0

.

√
µ2K logm

m

uniformly for all h ∈ Bh and u ∈ SK−1, with the proviso that m ≥ Cµ2K logm. Here, the second inequality
arises from (2.1).

C Analysis: Nonconvex formulation under Gaussian design
We consider the loss function

minimize
Z∈CK×K

f (h,x) =

m∑
j=1

∣∣bHj hxHaj − yj
∣∣2 + λ ‖h‖22 + λ ‖x‖22 . (C.1)

The main idea similar to the one presented in Appendix A, although the proof for Gaussian design is easier
due to the presence of more randomness. We shall also assume ‖h?‖2 = ‖x?‖2 = 1 for the sake of simplicity
and adopt the same notation as (A.2a)-(A.5b). The main part of the analysis lies in demonstrating the
following set of hypotheses by induction:

dist
(
zt, z?

)
≤
∥∥ẑt−1/2 − z?∥∥

2
≤ ρdist

(
zt−1, z?

)
+ C11η

(
λ+ σ

√
mK logm

)
(C.2a)

dist
(
zt,(l), z̃t

)
≤ C12

(√
K log3m

m
+
σ
√
K log2m

m

)
(C.2b)

max
1≤l≤m

∣∣aH
l

(
x̃t − x?

)∣∣ ≤ C13

(√
mK log3m

m
+
σ
√
mK log2m

m

)
(C.2c)

max
1≤l≤m

∣∣bHl (h̃t − h?)∣∣ ≤ C13

(√
mK log3m

m
+
σ
√
mK log2m

m

)
(C.2d)

for some constants C11, C12, C13 > 0. Additionally, to complete the induction argument for the base case,
we are in need of the following results of initialization:

dist
(
z0, z?

)
.

√
mK log2m

m
+
σ
√
mK logm

m
, (C.3a)
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dist
(
z0,(l), z̃0

)
≤ C13

(√
K log3m

m
+
σ
√
K log2m

m

)
, (C.3b)

max
1≤l≤m

∣∣aH
l

(
x̃0 − x?

)∣∣ ≤ C12

(√
mK log3m

m
+
σ
√
mK log2m

m

)
, (C.3c)

max
1≤l≤m

∣∣bHl (h̃0 − h?
)∣∣ ≤ C13

(√
mK log3m

m
+
σ
√
mK log2m

m

)
. (C.3d)

C.1 Induction analysis
Before embarking on the analysis, we state below a useful lemma which is direct consequence of the hypotheses
(C.2) and (C.3).

Lemma 19. Instate the notation and assumptions in Theorem 3. For t ≥ 0, suppose that the hypotheses
(C.2) and (A.14) hold in the first t iterations. Then there exist some constants C,C ′ > 0 such that for any
1 ≤ l ≤ m,

dist
(
zt, z?

)
≤ C

(√
mK log2m

m
+
λ+ σ

√
mK logm

m

)
, (C.4a)

∥∥∥ht(xt)H − h?x?H∥∥∥ ≤ C ′(√mK log2m

m
+
λ+ σ

√
mK logm

m

)
, (C.4b)

∥∥z̃t,(l) − z?∥∥
2
≤ 2C

(√
mK log2m

m
+
λ+ σ

√
mK logm

m

)
, (C.4c)

1

2
≤
∥∥x̃t∥∥

2
≤ 3

2
,

1

2
≤
∥∥h̃t∥∥

2
≤ 3

2
, (C.4d)

1

2
≤
∥∥x̃t,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥h̃t,(l)∥∥

2
≤ 3

2
, (C.4e)

1

2
≤
∥∥x̂t,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥ĥt,(l)∥∥

2
≤ 3

2
. (C.4f)

In addition, if t > 0, then one also has

∥∥ẑt−1/2 − z?∥∥
2
≤ C

(√
mK log2m

m
+
λ+ σ

√
K logm

m

)
. (C.4g)

This lemma can be proved in the same manner as Lemma 3 and hence we omit the proof here for brevity.

C.1.1 Characterizing local geometry

Similar to the nonconvex analysis of blind deconvolution, our first step is to establish some kind of restricted
strong convexity and smoothness as described in the following lemma. The proof can be found in Appendix
C.2.

Lemma 20. Let δ := c/ log2m for some sufficiently small constant c > 0. Suppose that m ≥ CK log6m for

some sufficiently large constant C > 0 and that σ
√
K log3m/m ≤ c1 for some sufficiently small constant

c1 > 0. Then with probability 1−O
(
m−10 + e−K logm

)
, one has

uH
[
D∇2f (z) +∇2f (z)D

]
u ≥ m

4
‖u‖22 and∥∥∇2f (z)

∥∥ ≤ 3m
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simultaneously for all points

z =

[
h
x

]
, u =


h1 − h2

x1 − x2

h1 − h2

x1 − x2

 and D =


γ1IK

γ2IK
γ1IK

γ2IK


obeying the following properties:

• z satisfies

max {‖h− h?‖2 , ‖x− x
?‖2} ≤ δ, (C.5a)

max
1≤j≤m

{∣∣aH
j (x− x?)

∣∣ , ∣∣bHj (h− h?)
∣∣} ≤ C13

1
log3/2m

, (C.5b)

• z1 := (h1,x1) is aligned with z2 := (h2,x2) in the sense that ‖z1 − z2‖2 = dist(z1, z2); in addition, they
satisfy

max {‖h1 − h?‖2 , ‖h2 − h?‖2 , ‖x1 − x?‖2 , ‖x2 − x?‖2} ≤ δ;

• γ1, γ2 ∈ R and obey
max {|γ1 − 1| , |γ2 − 1|} ≤ δ.

C.1.2 `2 error contraction

Next, by employing the established restricted strong convexity and smoothness in Lemma 20, we can prove
the hypothesis (C.2a) holds inductively. Our result is this:

Lemma 21. Set λ = Cλσ
√
mK logm for some sufficiently large constant Cλ > 0 and the stepsize η = cη/m

for some sufficiently small constant cη > 0. Suppose the sample complexity satisfies m ≥ CK log3m for
some sufficiently large constant C > 0. Then if the hypotheses (C.2) hold true at tth iteration, we have for
some constant C11 > 0,

dist
(
zt+1, z?

)
≤ (1− cη/16) dist

(
zt, z?

)
+ C11η

(
λ+ σ

√
mK logm

)
,

holds with probability exceeding 1−O(m−100).

Proof. The proof is the same as the analysis for Lemma 5 with the help of Lemma 20 and thus omitted here
for simplicity.

Before moving on to the next step, we provide a corollary to guarantee that the alignment parameters
does not change much between adjacent iterates.

Corollary 2. Instate the notation and assumptions in Theorem 3. For an integer t > 0, suppose that the
hypotheses (A.6) and (A.14) hold in the first t − 1 iterations. Then there exists some constant C > 0 such
that for any 1 ≤ l ≤ m, one has∣∣∣∣αt∣∣− 1

∣∣ . dist
(
z̃t, z?

)
.

√
mK log2m

m
+
σ
√
mK logm

m
, (C.6a)∣∣∣∣αt−1/2αt−1

− 1

∣∣∣∣ . cη

(√
mK log2m

m
+
σ
√
mK logm

m

)
, (C.6b)

∣∣∣∣∣∣αt,(l)mutual
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∣∣∣ . ∥∥ẑt,(l) − z?∥∥

2
.

√
mK log2m

m
+
σ
√
mK logm

m
, (C.6c)
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2
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2
,

1

2
≤
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2
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2
, (C.6d)

1

2
≤
∥∥xt,(l)∥∥

2
≤ 3

2
,

1

2
≤
∥∥ht,(l)∥∥

2
≤ 3

2
(C.6e)

with probability at least 1−O
(
m−100 + e−CK logm

)
.

This corollary can be proved in the same way as Corollary 1 and hence we omit it here for simplicity.
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C.1.3 Leave-one-out proximity

The next step is to control the discrepancy between the leave-one-out sequence and the original sequence.
The formal statement is given in the lemma below.

Lemma 22. Suppose the sample size obeys m ≥ CK log3m for some large enough constant C > 0. If the
hypotheses (C.2) hold true for the tth iteration, then with probability exceeding 1−O(m−10), we have

max
1≤l≤m

dist
(
zt+1,(l), z̃t+1

)
≤ C12

(√
K log3m

m
+
σ
√
K logm

m

)
, (C.7)

max
1≤l≤m

∥∥∥z̃t+1,(l) − z̃t+1
∥∥∥
2
. C12

(√
K log3m

m
+
σ
√
K logm

m

)
. (C.8)

The proof can be found in Appendix C.3.

C.1.4 Establishing incoherence

Then we proceed to prove the incoherence hypotheses, i.e. (C.2c) and (C.2d). They are much easier to
handle than the Fourier designs. We actually only need to prove the incoherence of al and xt+1. Then the
other follows immediately by the symmetry between {aj}mj=1 and {bj}mj=1 under Assumption 2. Similar to
(A.21), the triangle inequality and Cauchy-Schwarz inequality yield

∣∣aH
l
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)∣∣ ≤ ∣∣∣aH
l
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)∣∣∣+
∣∣∣aH
l

(
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2
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K log3m

m
+
σ
√
K log2m

m

)

+ 20
√

logm · 2C11

(√
mK log2m

m
+
σ
√
mK logm

m

)

≤ C13

(√
mK log3m

m
+
σ
√
mK log2m

m

)
, (C.9)

where the penultimate inequality follows from (F.1), (F.2) and (C.8). This establishes the hypothesis (C.2c)
for the (t+ 1)-th iteration.

The incoherence of bl and ht+1 (as stated in the hypothesis (C.2d)) follows from the symmetry between
{aj}mj=1 and {bj}mj=1. We summarize the results in the following lemma.

Lemma 23. Suppose the sample complexity obeys m ≥ CK logm for some sufficiently large constant C > 0
and λ = Cλσ

√
mK logm for some absolute constant Cλ > 0. If the hypotheses (C.2a)-(C.2d) hold for the

tth iteration, then with probability exceeding 1−O
(
m−100

)
for some constant C13 > 0, one has

max
1≤l≤m

∣∣aH
l

(
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) ∣∣ ≤ C13

(√
mK log3m

m
+
σ
√
mK log2m

m

)
,

max
1≤l≤m

∣∣bHl (h̃t+1 − h?
) ∣∣ ≤ C13

(√
mK log3m

m
+
σ
√
mK log2m

m

)
,

as long as C13 > 0 is some sufficiently large constant and η > 0 is taken to be some sufficiently small
constant.
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C.1.5 The base case: Spectral initialization

The last step of the proof is to establish the induction hypotheses for the base case. The following three
lemmas justify (C.3a)-(C.3d) respectively.

Lemma 24. Suppose the sample size satisfies m ≥ CK log5m for some large enough constant C > 0. Then
with probability exceeding 1−O(m−10), one has

dist
(
z0, z?

)
.

√
K log2m

m
+ σ

√
K logm

m
,

dist
(
z0,(l), z?

)
.

√
K log2m

m
+ σ

√
K logm

m
, 1 ≤ l ≤ m,

and ||α0| − 1| ≤ 1/4.

Proof. With the aid of Lemma 40, the proof is essentially identical to Ma et al. [2018, Eqn (94)] and thus
omitted here for brevity.

Lemma 25. Suppose m ≥ CK log5m for some sufficiently large constant C12 > 0. Then with probability at
least 1−O(m−1), one has

max
1≤l≤m

dist
(
z0,(l), z̃0

)
≤ C12

√
K log3m

m
.

Proof. The proof of this lemma is deferred to Appendix C.4.

Lemma 26. Suppose that m ≥ CK log6m for some large enough constant C > 0. Then with probability at
least 1−O(m−1), we have

max
1≤j≤m

∣∣aH
j

(
x̃0 − x?

)∣∣ ≤ C13

√K log3m

m
+ σ

√
K log2m
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 ,

max
1≤j≤m

∣∣∣bHj (h̃0 − h?
)∣∣∣ ≤ C13

√K log3m

m
+ σ

√
K log2m

m

 .

Proof. The first inequality can be established by the same derivation as for Ma et al. [2018, Lemma 21],
which is omitted here for brevity. The second inequality follows immediately since {aj}mj=1 and {bj}mj=1 have
the same distributions.

C.2 Proof of Lemma 20
To begin with, we decompose ∇2f(z) as follows

∇2f (z) = λI4K + E
[
∇2freg-free (z?)

]
+
(
∇2f (z)− E

[
∇2freg-free (z?)

]
− λI4K

)
,

where

freg-free (z) =

m∑
j=1

∣∣bHj hxHaj − yj
∣∣2 .

The following two lemmas allow us to control the two terms on the right-hand side of the above identity
separately.

Lemma 27. Instate the notation and conditions of Lemma 20. One has∥∥E [∇2freg-free (z?)
]∥∥ = 2m and uH

[
DE

[
∇2freg-free (z?)

]
+ E

[
∇2freg-free (z?)

]
D
]
u ≥ m ‖u‖22 .

Proof. Note that the expression of E[∇2freg-free(z
?)]/m is the same as that of ∇2F (z?) in Ma et al. [2018,

Lemma 26]. Hence the proof there can be straightforwardly adapted to our case and thus omitted here.
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Lemma 28. Suppose the sample size obeys m ≥ CK log3m for some large enough constant C > 0. Then
with probability at least 1−O(m−10), one has∥∥∇2f (z)− E

[
∇2f (z?)

]∥∥ ≤ 1

4
m

holds uniformly for all z satisfying (C.5).

Proof. See Appendix C.2.1.

With these two lemmas in hand, we have, for any (h,x) obeying (C.5), that∥∥∇2f (z)
∥∥ ≤ ∥∥E [∇2f (z?)

]∥∥+
∥∥∇2f (z)− E

[
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≤
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]∥∥+ λ+
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≤ 2m+ λ+

1

4
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≤ 3m.

Furthermore, it is readily seen that

uH
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]
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= uH
{
DE

[
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]
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]
D
}
u+ 2λuHDu

+ uHD
{
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]}
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{
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[
∇2f (z?)

]}
Du

(i)
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4
m ‖u‖22

(iii)
≥ 1

4
m ‖u‖22 ,

where (i) is due to Lemma 27 and the fact that uHDu ≥ (1− δ)‖u‖22; (ii) relies on the bound ‖D‖ ≤ 1 + δ
and Lemma 28; and (iii) holds as long as δ ≤ 1/4. We have thus finished the proof for the desired smoothness
and restricted strong convexity conditions.

C.2.1 Proof of Lemma 28

The idea of the proof is similar to that of Ma et al. [2018, Lemma 27] except that the design of {bj}mj=1 is
different. By triangle inequality, we can upper bound the quantity of interest as∥∥∇2f (z)− E

[
∇2f (z?)

]∥∥ ≤ 2α1 + 2α2 + 4α3 + 4α4, (C.10)

where
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We will control these four terms separately as follows.
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Controlling α1. In terms of α1, by the triangle inequality, one has
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It is first seen that
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When it comes to ‖
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We intend to invoke the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to control
‖
∑m
j=1(bjb

H
j − IK)‖. Observe that
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=
√

(K + 1)m,

we are ready to apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive∥∥∥∥∥∥
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H
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√

logm+BZ log

(
BZ
√
m

σZ

)
logm .

√
mK logm (C.13)

with high probability. Substitution of (C.13) into (C.12) yields∥∥∥∥∥∥
m∑
j=1

bjb
H
j

∥∥∥∥∥∥ ≤ 2m, (C.14)

as long as m� K logm. Plugging this inequality into (C.11) gives

γ1 . C13
m

logm
. (C.15)

2. The second term γ2 can be further decomposed as follows

γ2 ≤

∥∥∥∥∥∥
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The second term on the right-hand side of (C.16) has already been considered in (C.13). We are therefore
left to control the first term. Let
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Regarding the second term of (C.17), due to (F.2) we have∥∥∥∥∥∥
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holds with probability over 1−O(m−100). For the first term of (C.17), one can derive∥∥∥∥∥∥
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=
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where the first inequality holds due to the triangle inequality. Invoking the Cauchy-Schwartz inequality
yields
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which taken collectively with (C.14) gives
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We can then invoke the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to control
‖
∑m
j=1Wj‖. To this end, note that
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K (cf. Vershynin [2018, Theorem 3.1.1]). In addition, simple calcu-

lation yields∥∥∥∥∥∥
m∑
j=1

E
[
WjW

H
j

]∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

Var
(∣∣aH

j x
?
∣∣2 1{|aH

jx
?|≤20√logm}

)
E
[
bjb

H
j bjb

H
j

]∥∥∥∥∥∥ ≤ 3 (K + 2)m,

and ∥∥∥∥∥∥
m∑
j=1

E
[
W H

j Wj

]∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

E
[
WjW

H
j

]∥∥∥∥∥∥ ≤ 3 (K + 2)m.

As a result, by setting
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with high probability, where the last inequality holds as long as m � K log5m. Plugging (C.18) and
(C.19) into (C.17) gives ∥∥∥∥∥∥
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)
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Substitution of (C.13) and (C.20) into (C.16) yields

γ2 .
√
mK logm. (C.21)

As a consequence, taking (C.15) and (C.21) collectively yields

α1 .
m

logm
+
√
mK logm. (C.22)
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Controlling α2. Regarding α2, since the roles played by {aj}mj=1 and {bj}mj=1 are symmetric in this
problem, it is easily seen that α2 admits the same bound as that of α1.

Controlling α3. When it comes to the third term α3, one makes the observation that

α3 ≤

∥∥∥∥∥∥
m∑
j=1

bjb
H
j

(
hxH − h?x?H

)
aja

H
j

∥∥∥∥∥∥+

∥∥∥∥∥∥
m∑
j=1

ξjbja
H
j

∥∥∥∥∥∥ . (C.23)

The second term on the right-hand side of this relation has already been bounded by Lemma 36. Regarding
the first term on the right-hand side of (C.23), one can further decompose∥∥∥∥∥∥
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To bound the last three terms of (C.24), we resort to the following two lemmas, whose proofs can be found
in Appendix C.2.2 and Appendix C.2.3.

Lemma 29. With probability at least 1−O(m−100 +me−CK) for some constant C > 0, one has∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

? (x− x?)H ajaH
j −mh? (x− x?)H

∥∥∥∥∥∥ ≤ 2δm (C.25)

holds uniformly for any x satisfying (C.5).

Lemma 30. With probability at least 1− 2 exp(−CK logm) for some constant C > 0, one has∥∥∥∥∥∥
m∑
j=1

bjb
H
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holds uniformly for any (h,x) obeying (C.5) for some sufficiently large constant C ′ > 0.

By the symmetry between {aj}mj=1 and {bj}mj=1 and Lemma 29, one arrives at
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H
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with probability over 1− 2 exp(−CK logm). Plugging (C.25), (C.26) and (C.27) into (C.24) yields∥∥∥∥∥∥
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Substitution of (C.28) and (D.3) into (C.23) thus gives

α3 ≤ 6δm+ Cσ
√
mK logm (C.29)

for some large enough constant C > 0.

Controlling α4. With regards to the last term α4, we have
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.

These two terms have already been bounded by (C.28) and (F.9) respectively. Combining this inequality
with (C.28) gives

α4 ≤ 6δm+ 4Ct
√
mK logm. (C.30)

Putting all this together. Finally, by plugging (C.22), (C.29) and (C.30) into (C.10), we arrive at∥∥∇2f (z)−∇2F (z?)
∥∥ . σ

√
mK logm+

m

logm
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4
m

holds with probability exceeding 1−O(m−10).

C.2.2 Proof of Lemma 29

Consider the event
E :=

{
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1≤j≤m

∣∣bHj h?∣∣ ≤ 20
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logm, max
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‖aj‖2 ≤ 10
√
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}
. (C.31)

(F.1) and (F.2) suggest that event E holds with probability at least 1 − O(m−100 + me−CK). The proof
thereafter will be developed on this event.

Due to the assumptions (C.5), we have — for any given unit vectors u, v ∈ CK — that
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.

In what follows, we shall first establish concentration inequalities for this quantity for a given point (u,v),
and then establish uniform concentration that holds for simultaneously for all points of interest.

Concentration. Consider any fixed unit vectors u and v). We seek to invoke the Bernstein inequality
Vershynin [2018, Theorem 2.8.2] to control

∑m
j=1(Xj − E[Xj ]). We observe that
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where the first inequality comes from the fact that ‖X − E[X]‖ψ1 ≤ C‖X‖ψ1 (cf. Vershynin [2018, Section
2.7]) and the last inequality is due to the event E . Hence, the Bernstein inequality Vershynin [2018, Theorem
2.8.2] reveals that

P
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∣∣∣∣∣∣ ≤ Ct√mK, (C.32)

with probability exceeding 1− 2 exp(−cC2
tK logm).

Union bound over epsilon-nets. Next, we intend to show that (C.32) holds uniformly for any unit
vectors u and v. Define Nx to be an ε1-net of Bx(δ) := {x : ‖x − x?‖2 ≤ δ} and N0 an ε2-net of the unit
sphere SK−1. In view of Vershynin [2018, Corollary 4.2.13], we can choose these nets to guarantee that
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)4K
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Taking these collectively with the union bound reveals that (C.32) holds uniformly for all x ∈ Nx and u,
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Approximation. We then turn to the following quantity
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For any x satisfying the assumptions (C.5) and any u, v ∈ SK−1, one can choose x0 ∈ Nx, u0 ∈ N0 and
v0 ∈ N0 satisfying ‖x − x0‖2 ≤ ε1 and max{‖u − u0‖2, ‖v − v0‖2} ≤ ε2. Set ε1 = δ/K and ε2 = 1/4. The
triangle inequality gives

|g (u,v,x)− g (u0,v0,x0)|
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To simplify the second term above, we notice that on event E (cf. (C.31)),∣∣∣(x− x0)
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and hence ∣∣∣(x0 − x?)H aj
∣∣∣ ≤ ∣∣∣(x− x?)H aj∣∣∣+
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As a result, one has the following identity
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It then follows that
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Plugging (C.37) into (C.33) yields
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Next, we look at g(u0,v0,x0), and notice that (C.32) holds for

Xj = uH
0 bjb

H
j h

? (x0 − x?)H ajaH
j v0 1

{
|(x0−x?)Haj|≤20C13

1

log3/2m

},
due to x0 ∈ Nx, u0 ∈ N0 and v0 ∈ N0. By virtue of the triangle inequality, one has
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Putting all this together. Let us define
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Taking (C.38) and (C.39) collectively gives rise to

|g (u,v,x)| ≤ |g (u0,v0,x0)|+ |g (u,v,x)− g (u0,v0,x0)|
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A key observation is that x′ := 5(x− x0) + x? ∈ S by ‖x− x0‖2 ≤ ε1 and (C.35). Hence, the last term
in (C.40) satisfies∥∥∥∥∥∥
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where the first equality comes from (C.34). Plugging this inequality into (C.40), taking the maximum over
u and v on the left-hand side of (C.40) and rearranging terms yield

(1− 2ε2)

∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

? (x− x?)H ajaH
j 1

{
|(x−x?)Haj|≤20C13

1

log3/2m

}−mh? (x− x?)H
∥∥∥∥∥∥

≤ 2Ct
√
mK +

1

5
sup
x̃∈S

∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

? (x̃− x?)H ajaH
j 1

{
|(x̃−x?)Haj|≤20C13

1

log3/2m

}−mh? (x̃− x?)H
∥∥∥∥∥∥ .

Further, taking the maximum over x ∈ S on the left-hand side of the above inequality gives(
1− 2ε2 −

1

5

)
sup
x∈S

∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

? (x− x?)H ajaH
j 1

{
|(x−x?)Haj|≤20C13

1

log3/2m

}−mh? (x− x?)H
∥∥∥∥∥∥ ≤ 2Ct

√
mK,

and, consequently,

sup
x∈S

∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

? (x− x?)H ajaH
j 1

{
|(x−x?)Haj|≤20C13

1

log3/2m

}
∥∥∥∥∥∥

= sup
x∈S

∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

? (x− x?)H ajaH
j

∥∥∥∥∥∥
≤ m

∥∥∥h? (x− x?)H
∥∥∥+ 4Ct

√
mK

≤ 2δm,

as long as m� K log4m.

C.2.3 Proof of Lemma 30

Similar to proof of Lemma 29, we consider the event

E :=

{
max

1≤j≤m

∣∣bHj h?∣∣ ≤ 20
√

logm, max
1≤j≤m

‖aj‖2 ≤ 10
√
K

}
, (C.41)
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which holds with probability at least 1 − O(m−100 + me−CK). The proof thereafter will be developed on
this event. For any fixed unit vectors u, v ∈ CK and (h,x) obeying the assumptions (C.5), one has

m∑
j=1

uHbjb
H
j (h− h?) (x− x?)H ajaH

j v

=

m∑
j=1

uHbjb
H
j (h− h?) (x− x?)H ajaH

j v 1
{
max{|bHj (h−h?)|,|(x−x?)Haj|}≤20C13

1

log3/2m

}
︸ ︷︷ ︸

=:Wj

.

Concentration. Consider any fixed vectors u, v and (h,x). We seek to invoke the Bernstein inequality
Vershynin [2018, Theorem 2.8.2] to control

∑m
j=1Wj . We observe that

‖Wj − E [Wj ]‖ψ1
≤ C ‖Wj‖ψ1

≤ C

∣∣∣∣∣bHj (h− h?) (x− x?)H aj 1{
max{|bHj (h−h?)|,|(x−x?)Haj|}≤20C13

1

log3/2m

}
∣∣∣∣∣ ∥∥uHbj

∥∥
ψ2

∥∥aH
j v
∥∥
ψ2

= C

∣∣∣∣∣bHj (h− h?) (x− x?)H aj 1{
max{|bHj (h−h?)|,|(x−x?)Haj|}≤20C13

1

log3/2m

}
∣∣∣∣∣

≤ 400CC2
13

1

log3m
,

where the first inequality comes from the fact that ‖X − E[X]‖ψ1
≤ C‖X‖ψ1

(cf. Vershynin [2018, Section
2.7]), the second one is due to Vershynin [2018, Lemma 2.7.7] and the last inequality is due to the event E .
Hence, the Bernstein inequality Vershynin [2018, Theorem 2.8.2] reveals that

P

∣∣∣∣∣∣
m∑
j=1

(Wj − E [Wj ])

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−cmin

(
t2 log6m

m
, t log3m

))
.

Letting t = Ct
√
mK for some large enough constant Ct > 0, we obtain that∣∣∣∣∣∣

m∑
j=1

(Wj − E [Wj ])

∣∣∣∣∣∣ ≤ Ct√mK, (C.42)

holds with probability exceeding 1− 2 exp(−cC2
tK logm).

Union bound. Next, we define Nz to be an ε1-net of Bz(δ) := {(h,x) : max{‖h− h?‖2, ‖x− x?‖2} ≤ δ}
and N0 an ε2-net of the unit sphere SK−1. In view of Vershynin [2018, Corollary 4.2.13], we have

|Nz| ≤
(

1 +
2δ

ε1

)4K

and |N0| ≤
(

1 +
2

ε2

)2K

.

Taking this collectively with the union bound yields that (C.42) holds uniformly for any (h,x) ∈ Nz and u,
v ∈ N0 with probability over

1−
(

1 +
2δ

ε1

)4K (
1 +

2

ε2

)4K

· 2 exp (−CK logm) ≥ 1− 2 exp(−CK logm).

Approximation. Define

Hj (h,x) := bjb
H
j (h− h?) (x− x?)H ajaH

j 1
{
max{|bHj (h−h?)|,|(x−x?)Haj|}≤20C13

1

log3/2m

} .
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For any (h,x) satisfying the assumptions (C.5) and any u, v ∈ SK−1, one can choose (h0,x0) ∈ Nz, u0 ∈ N0

and v0 ∈ N0 satisfying max{‖h− h0‖2, ‖x− x0‖2} ≤ ε1 and max{‖u− u0‖2, ‖v − v0‖2} ≤ ε2. Let

g (u,v,h,x) :=

m∑
j=1

uHHj (h,x)v −m (h− h?) (x− x?)H .

Set ε1 = δ/K and ε2 = 1/4. In view of the triangle inequality, one has

|g (u,v,h,x)− g (u0,v0,h0,x0)|
≤ |g (u,v,h,x)− g (u0,v,h,x)|+ |g (u0,v,h,x)− g (u0,v0,h,x)|

+ |g (u0,v0,h,x)− g (u0,v0,h0,x)|+ |g (u0,v0,h0,x)− g (u0,v0,h0,x0)|

≤ 2ε2

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥

+ |g (u0,v0,h,x)− g (u0,v0,h0,x)|+ |g (u0,v0,h0,x)− g (u0,v0,h0,x0)| . (C.43)

To simplify the last two terms, we observe that∣∣∣(x− x0)
H
aj

∣∣∣ ≤ max
1≤j≤m

‖aj‖2 · ‖x− x0‖2 ≤ 10
√
Kε1 ≤ C13

1

log3/2m
, (C.44)

and furthermore, ∣∣∣(x0 − x?)H aj
∣∣∣ ≤ ∣∣∣(x− x?)H aj∣∣∣+

∣∣∣(x− x0)
H
aj

∣∣∣
≤
∣∣∣(x− x?)H aj∣∣∣+ C13

1

log3/2m

≤ 3C13
1

log3/2m
.

Similarly the same bounds also hold for |bHj (h0 − h?)|. It follows that

1{
|(x−x0)

Haj|≤20C13
1

log3/2m

} = 1{
|(x0−x?)Haj|≤20C13

1

log3/2m

} = 1{
|(x−x?)Haj|≤20C13

1

log3/2m

} = 1, (C.45)

1{
|bHj (h−h0)|≤20C13

1

log3/2m

} = 1{
|bHj (h0−h?)|≤20C13

1

log3/2m

} = 1{
|bHj (h−h?)|≤20C13

1

log3/2m

} = 1. (C.46)

Then, we can bound the last two term in (C.43) as follows

|g (u0,v0,h,x)− g (u0,v0,h0,x)|+ |g (u0,v0,h0,x)− g (u0,v0,h0,x0)|

≤

∥∥∥∥∥∥
m∑
j=1

Hj (h− h0 + h?,x)−m (h− h0) (x− x?)H
∥∥∥∥∥∥

+

∥∥∥∥∥∥
m∑
j=1

Hj (h,x− x0 + x?)−m (h0 − h?) (x− x0)
H

∥∥∥∥∥∥ .
Considering g(u0,v0,h0,x0), one has

|g (u0,v0,h0,x0)|

≤

∣∣∣∣∣∣
m∑
j=1

(Wj − E [Wj ])

∣∣∣∣∣∣+

∣∣∣∣∣∣
m∑
j=1

(
E [Wj ]−muH (h0 − h?) (x0 − x?)H v

)∣∣∣∣∣∣
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≤ Ct
√
mK +

∣∣∣∣∣∣
m∑
j=1

E

[
uHbjb

H
j (h0 − h?) (x0 − x?)H ajaH

j v 1
{
max{|bHj (h0−h?)|,|(x0−x?)Haj|}>20C13

1

log3/2m

}
]∣∣∣∣∣∣

= Ct
√
mK, (C.47)

where the first inequality is due to triangle inequality; the second comes from (C.42) and the last is because
of (C.46).

Putting all this together. Let

S ′ :=

{
(h,x) : max

{∣∣∣(x− x?)H aj∣∣∣ , ∣∣∣(h− h?)H bj∣∣∣} ≤ 20C13
1

log3/2m
,max {‖h− h?‖2 , ‖x− x

?‖2} ≤ δ
}
.

It is easy to check that (h, 5(x− x0) + x?) ∈ S by using the facts that ‖x− x0‖2 ≤ ε1 and (C.44). Hence,
we have ∥∥∥∥∥∥

m∑
j=1

Hj (h,x− x0 + x?)−m (h− h?) (x− x0)
H

∥∥∥∥∥∥
≤ 1

5
sup

(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥ .

Similarly, one has (5(h− h0) + h?,x) ∈ S and therefore,∥∥∥∥∥∥
m∑
j=1

Hj (h− h0 + h?,x)−m (h− h0) (x− x?)H
∥∥∥∥∥∥

≤ 1

5
sup

(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥ .

Hence, combining the above two inequalities with (C.43) and (C.47) reveals that

|g (u,v,h,x)| ≤ |g (u0,v0,h0,x0)|+ |g (u,v,h,x)− g (u0,v0,h0,x0)|

≤ Ct
√
mK + 2ε2

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥

+
2

5
sup

(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥ .

Taking the maximum over u and v on the left-hand side of the above inequality and rearranging terms yield

(1− 2ε2)

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥

≤ Ct
√
mK +

2

5
sup

(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥ .

Further taking the maximum over (h,x) on S ′ gives(
1− 2ε2 −

2

5

)
sup

(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)−m (h− h?) (x− x?)H
∥∥∥∥∥∥ ≤ Ct√mK,
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and then rearranging terms yields

sup
(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)

∥∥∥∥∥∥ ≤ sup
(h,x)∈S′

∥∥∥m (h− h?) (x− x?)H
∥∥∥+ 4Ct

√
mK

≤ δ2m+ 4Ct
√
mK.

Recognizing that

sup
(h,x)∈S′

∥∥∥∥∥∥
m∑
j=1

Hj (h,x)

∥∥∥∥∥∥ = sup
(h,x)∈S′

∥∥∥bjbHj (h− h?) (x− x?)H ajaH
j

∥∥∥
and that the set of all (h,x) obeying (C.5) is a subset of S ′, we have established the desired result.

C.3 Proof of Lemma 22
The proof is very much the same as that of Lemma 6, except that the contraction coefficient in the expression
ν1 in (A.34) is (1− cη) rather than (1− η) and the bound on ν3 is different. In what follows, we shall only
describe how to bound ν3 here, for the sake of brevity.

The proof proceeds by bounding ν3 via the four terms as indicated by (A.35a), which we discuss as
follows.

1. For the first term ν31, one has

ν31 ≤
∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ ‖bl‖2 ∣∣∣aH

l x̂
t,(l)
∣∣∣

≤
∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ · 10

√
K · 20

√
logm ·

∥∥x̂t,(l)∥∥
2

≤ 400
√
K logm

∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ , (C.48)

where the penultimate inequality follows from (F.1) and (F.2); the last inequality is due to (C.4f).

2. Regarding ν32, one has

ν32 ≤
∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ ‖al‖2 ∣∣∣bHl ĥt,(l)∣∣∣

≤
∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ · 10

√
K · 20

√
logm

∥∥∥ĥt,(l)∥∥∥
2

≤ 400
√
K logm

∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣ , (C.49)

where the second line follows from (F.1) and (F.2); the last inequality is due to (C.4f). Further for some
sufficiently large constant C > 0, there holds∣∣∣bHl (ĥt,(l) − h?)∣∣∣ ≤ 20

√
logm

∥∥∥ĥt,(l) − h?∥∥∥
2

≤ 20
√

logm
(∥∥∥ĥt,(l) − h̃t∥∥∥

2
+
∥∥∥h̃t − h?∥∥∥

2

)
≤ C

(√
mK log3m

m
+
σ
√
K log2m

m

)
, (C.50)

where the last inequality comes from (C.2b) and (C.4a). Similarly we can see this bound also holds for
|(x̂t,(l) − x?)Hal|. Therefore,∣∣∣bHl ĥt,(l)x̂t,(l)Hal − bHl h?x?Hal∣∣∣

88



≤
∣∣∣∣bHl ĥt,(l) (x̂t,(l) − x?)H al∣∣∣∣+
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≤
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∣∣bHl h?∣∣) · ∣∣∣∣(x̂t,(l) − x?)H al∣∣∣∣+
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≤

(
C
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mK log3m

m
+
σ
√
mK log2m

m

)
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√
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)
· C

(√
mK log3m

m
+
σ
√
K log2m

m

)

+ C

(√
mK log3m

m
+
σ
√
K log2m

m

)
· 20
√

logm (C.51)

.

√
mK log4m

m
+
σ
√
mK log3m

m
, (C.52)

where the penultimate inequality follows from (F.1) and (C.50). Substituting (C.52) into (C.48) and
(C.49), we reach

ν31 + ν32 .
√
K logm ·

(√
mK log4m

m
+
σ
√
mK log3m

m

)

≤ K
√
m log5m

m
+
σK
√
m log4m

m
. (C.53a)

3. Regarding ν33 and ν34, it can be seen that

ν33 =
∥∥∥ξlblaH

l x̂
t,(l)
∥∥∥
2
≤ |ξl| ‖bl‖2

∣∣∣aH
l x̂

t,(l)
∣∣∣ (i)
. σ
√
K
∥∥x̂t,(l)∥∥

2
logm ≤ 2σ

√
K logm, (C.53b)

ν34 =
∥∥∥ξlalbHl ĥt,(l)∥∥∥

2
≤ |ξl| ‖al‖2

∣∣∣bHl ĥt,(l)∣∣∣ (i)
. σ
√
K
∥∥ĥt,(l)∥∥

2
logm ≤ 2σ

√
K logm, (C.53c)

where (i) holds by (F.1), (F.2) and the independence between ξl,al, bl and x̂t,(l).

Consequently, by (C.48) and (C.53a)-(C.53c) we have

‖ν3‖2 .
K
√
m log5m

m
+ σ
√
K logm, (C.54)

as long as m � K log2m. Then the proof follows the same line of idea as Appendix A.8, resulting in a
similar inequality as (A.38) as follows:

dist
(
zt+1,(l), z̃t+1

)
≤ (1− cη) dist

(
zt,(l), z̃t

)
+ ηC

(
K
√
m log5m

m
+ σ
√
K logm

)

≤ C

(√
K log3m

m
+
σ
√
K log2m

m

)
,

provided that η = cη/m with cη > 0 being some sufficiently small constant. The proof for (C.8) follows
from the same argument leading to (A.40) and is thus omitted here for simplicity.

C.4 Proof of Lemma 25
Recall the definition of M and M (l) under the Gaussian design:

M :=
1

m

m∑
j=1

yjbja
H
j , and M (l) :=

1

m

∑
j 6=l

yjbja
H
j .
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Applying Wedin’s sinΘ theorem Dopico [2000, Theorem 2.1] gives that for some universal constant C ′ > 0,
there holds

min
α∈C,|α|=1

{∥∥∥αȟ0 − ȟ0,(l)
∥∥∥
2

+
∥∥∥αx̌0 − x̌0,(l)

∥∥∥
2

}
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)
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2
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)∥∥
2

σ1
(
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)
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.

By invoking Weyl’s inequality, we obtain
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≥ 1

2
,

where (i) is due to the facts that
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(
E
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(
m− 1

m
h?x?H

)
≥ 3

4
, and σ2 (E [M ]) = σ2

(
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)
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and (ii) comes from Lemma 40. Hence, one has
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(C.55)
We are left with bounding the two terms on the right-hand side of (C.55).

• Regarding the first term on the right-hand side of (C.55), we have∥∥∥(M −M (l)
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where the second inequality is due to the triangle inequality; the penultimate inequality comes from (F.1),
(F.2) and the fact that with probability exceeding 1−O(m−100),

max
1≤l≤m

∣∣∣aH
l x̌

0,(l)
∣∣∣ ≤ 20

√
logm,

due to the independence between x̌0,(l) and al.

• The second term on the right-hand side of (C.55) can be bounded in a similar fashion as follows∥∥∥ȟ0,(l)H
(
M −M (l)

)∥∥∥
2

=
1

m

∥∥∥ȟ0,(l)Hbl
(
bHl h

?x?Hal + ξl
)
aH
l

∥∥∥
2

≤ 1

m

∥∥∥ȟ0,(l)Hblb
H
l h

?x?Hala
H
l

∥∥∥
2

+
1

m

∥∥∥ξlȟ0,(l)Hbla
H
l

∥∥∥
2

=
1

m
·
∣∣∣ȟ0,(l)Hbl

∣∣∣ ∣∣bHl h?∣∣ ∣∣x?Hal∣∣ ∥∥aH
l

∥∥
2

+
1

m
|ξl|
∣∣∣ȟ0,(l)Hbl

∣∣∣ ∥∥aH
l

∥∥
2

≤ 1

m
· 20
√

logm ·
(

20
√

logm
)2
· 10
√
K +

1

m
· 20σ

√
logm · 20

√
logm · 10

√
K

.

√
K log3m

m
+
σ
√
K log2m

m
,
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where the penultimate inequality comes from (F.1), (F.2) and the fact that

max
1≤l≤m

∣∣∣ȟ0,(l)Hbl

∣∣∣ ≤ 20
√

logm

holds with probability exceeding 1−O(m−100) (due to the independence between ȟ0,(l) and bl).

Plugging the above two bounds into (C.55) leads to

min
α∈C,|α|=1

{∥∥∥αȟ0 − ȟ0,(l)
∥∥∥
2

+
∥∥∥αx̌0 − x̌0,(l)

∥∥∥
2

}
≤ C̃

(√
K log3m

m
+
σ
√
K log2m

m

)
,

for some universal constant C̃ > 0. To convert this bound into the desired version, we can employ the same
argument connecting Ma et al. [2018, Eqn (240)] to Ma et al. [2018, Eqn (245)]. The details are omitted
here for brevity.

D Analysis under Gaussian design: connections between convex
and nonconvex solutions

D.1 Preliminaries
Here, we state below a few elementary technical lemmas that prove useful in the proof. To begin with, we
show that the operator A is well-controlled in this case, whose counterpart in the Fourier design is Lemma
1.

Lemma 31. For the operator A defined under the Gaussian setting, we have, with probability at least
1−O(m−10), that

‖A‖ ≤ 10
√
mK logm.

Proof. Denote

A :=

 a>1
...
a>m

 ∈ Cm×K , B :=

 b>1
...
b>m

 ∈ Cm×K .

We can rewrite A in matrix form as follows

A (Z) =
{
bHj Zaj

}m
j=1

=
[
diag (A:,1)B diag (A:,2)B · · · diag (A:,K)B

]
vec (Z) .

This allows one to express and obtain

‖A‖2 =
∥∥[ diag (A:,1)B diag (A:,2)B · · · diag (A:,K)B

]∥∥2
≤ ‖B‖2 ·

K∑
i=1

‖diag (A:,i)‖2

≤

∥∥∥∥∥∥
m∑
j=1

bjb
H
j

∥∥∥∥∥∥ ·K max
1≤i≤K

max
1≤j≤m

|Ai,j |2

≤ 2m ·K · 20 logm

with probability at least 1−O(m−100).

Next, the following lemma corresponds to Lemma 39 under the Fourier design. Its proof is deferred to
Appendix D.3.

Lemma 32. Suppose that T is the tangent space of hxH with ‖h‖2 = ‖x‖2 = 1 and m ≥ CK log2m for
some sufficiently large constant C > 0. Then there exists some sufficiently large constant C ′ > 0 such that

‖PTA∗APT −mPT ‖ ≤ C ′
√
mK logm

with probability exceeding 1−O(m−10).
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D.2 Proof of Theorem 3
In this section, we proceed to prove Theorem 3 by connecting the convex minimizer with nonconvex iterates,
in the same vein as in the Fourier design case (cf. Appendix B). To begin with, a lemma stating the results
of Algorithm 3 under the Gaussian design is listed below.

Lemma 33. Take λ = Cλσ
√
mK logm for some sufficiently large constant Cλ > 0. Suppose that Assumption

2 holds. Assume the number of measurements obeys m ≥ CK log6m for some sufficiently large constant

C > 0 and the noise satisfies σ
√
K log5 /m ≤ c for some sufficiently small constant c > 0. Let stepsize η

be cη/m for some sufficiently small constant cη > 0. Then, with probability at least 1−O
(
m−100 +me−K

)
,

the iterates {ht,xt}0<t≤t0 of Algorithm 3 satisfy

dist
(
zt, z?

)
≤ ρdist

(
zt−1, z?

)
+ C11η

(
λ+ σ

√
mK logm

)
, (D.1a)

dist
(
zt,(l), z̃t

)
≤ C12

σ
√
K log2m

m
, (D.1b)

max
1≤l≤m

∥∥∥z̃t,(l) − z̃t∥∥∥
2
. C12

σ
√
K log2m

m
, (D.1c)

max
1≤l≤m

∣∣aH
l

(
x̃t − x?

)∣∣ ≤ C13
σ
√
mK log2m

m
, (D.1d)

max
1≤l≤m

∣∣bHl (h̃t − h?) ∣∣ ≤ C13
σ
√
mK log2m

m
(D.1e)

for any 0 < t ≤ t0, where ρ = 1 − cρcη for some small constant cρ > 0, and we take t0 = m20. Here, C11,
C12 and C13 are positive constants. Additionally, one has

min
0≤t≤t0

∥∥∇f (ht,xt)∥∥
2
≤ λ

m10
. (D.1f)

(D.1a)-(D.1e) can be seen as direct consequences from our analysis in Appendix C, while (D.1f) can be
derived by following the proof in Appendix B.3.2. Hence, we do not repeat the proof here for brevity.

Similar to Conditions 1 and 2, we single out two critical conditions on the operators under Assumption
2. The first condition below requires the regularization parameter λ to be large enough, so as to dominate
a certain form of noise and the deviation of T

(
hxH − h?x?H

)
from its mean m

(
hxH − h?x?H

)
.

Condition 3. The regularization parameter λ satisfies

1.
∥∥T (hxH − h?x?H

)
−m

(
hxH − h?x?H

)∥∥ < λ/8.

2. ‖A∗ (ξ)‖ ≤ cλ for some small constant c > 0.

The second condition is concerned with the injectivity property of A.

Condition 4. Let T be the tangent space of hxH. Then for all Z ∈ T , one has

‖A (Z)‖22 ≥
m

16
‖Z‖2F .

Armed with these two conditions, the following lemma reveals how an approximate nonconvex optimizer
can serve as a proxy of the convex minimizer. The proof of this lemma can be developed in the same manner
as in Appendix A.8; the details are omitted here for brevity.

Lemma 34. Suppose that (h,x) obeys

‖∇f (h,x)‖2 ≤ C
λ

m10
(D.2a)

for some constants C > 0. Then under Conditions 3 and 4, any minimizer Zcvx of the convex problem (1.3)
satisfies ∥∥hxH −Zcvx

∥∥
F
. ‖∇f (h,x)‖2 .
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Consequently, the conclusions in Theorem 3 can be easily derived from Lemma 34 by similar calculations
as proof of Theorem 1 in Appendix B.1, and thus omitted here for brevity.

It remains to demonstrate that Conditions 3 and 4 hold with high probability under the sample size and
noise level conditions (2.7). We start with the first point in Condition 3. Its proof can be directly adaptated
from the proof in Appendix B.5, and thus omitted here for simplicity.

Lemma 35. Suppose that the sample complexity satisfies m ≥ CK log4m for some sufficiently large constant
C > 0. Take λ = Cλσ

√
mK logm for some large enough constant Cλ > 0. Then with probability at least

1−O
(
m−10 +me−CK

)
, we have∥∥T (hxH − h?x?H

)
−m

(
hxH − h?x?H

)∥∥ < λ/8

simultaneously for any (h,x) obeying (B.5a) and (B.5b).

The next lemma corresponds to the second point in Condition 3.

Lemma 36. Suppose that Assumption 2 holds and m ≥ CK log5m for some sufficiently large constant
C > 0. Then one has

‖A∗ (ξ)‖ . σ
√
mK logm (D.3)

holds with probability exceeding 1−O(m−10).

Proof. See Appendix F.1.

Turning attention to Condition 4, we have the following lemma.

Lemma 37. Suppose that the sample complexity satisfies m ≥ CK logm for some sufficiently large constant
C > 0. Then with probability at least 1−O

(
m−10

)
,

‖A (Z)‖22 ≥
m

16
‖Z‖2F , ∀Z ∈ T

holds simultaneously for all T for which the associated point (h,x) obeys (B.5a) and (B.5b). Here, T denotes
the tangent space of hxH.

The proof is a direct adaptation from Appendix B.7 and thus omitted for brevity.

D.3 Proof of Lemma 32
The framework and notation adopted here are similar to Ahmed et al. [2013, Section 5.2]. To facilitate the
proof, we introduce an operator for x1,x2,y1,y2 ∈ CK as follows:

x1y
H
1 ⊗ x2y

H
2 :=

{
y1iy1kx1x

H
2

}
i,k
∈ CK

2×K2

.

Denote by vj = 〈h, bj〉aj and uj = 〈x,aj〉
(
IK − hhH

)
bj . Then we can rewrite the operator PTA∗APT :

CK×K → CK×K as the following matrix

Q :=

m∑
j=1

(
hvHj ⊗ hvHj + hvHj ⊗ ujxH + ujx

H ⊗ hvHj + ujx
H ⊗ ujxH

)
∈ CK

2×K2

,

which satisfies
vec (PTA∗APT (X)) = Qvec (X)

for any X ∈ CK×K . This implies that

‖PTA∗APT −mPT ‖
= ‖PTA∗APT − E [PTA∗APT ]‖ = ‖Q − E [Q]‖
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≤

∥∥∥∥∥∥
m∑
j=1

(
hvHj ⊗ hvHj − E

[
hvHj ⊗ hvHj

])∥∥∥∥∥∥︸ ︷︷ ︸
β1

+

∥∥∥∥∥∥
m∑
j=1

(
hvHj ⊗ ujxH − E

[
hvHj ⊗ ujxH

])∥∥∥∥∥∥︸ ︷︷ ︸
β2

+

∥∥∥∥∥∥
m∑
j=1

(
ujx

H ⊗ hvHj − ujxH ⊗ hvHj
)∥∥∥∥∥∥︸ ︷︷ ︸

β3

+ +

∥∥∥∥∥∥
m∑
j=1

(
ujx

H ⊗ ujxH − E
[
ujx

H ⊗ ujxH
])∥∥∥∥∥∥︸ ︷︷ ︸

β4

(D.4)

In the sequel, we consider the four terms on the right-hand side of (D.4) separately.

Controlling β1. Regarding the first term β1, we denote

Zj := hvHj ⊗ hvHj − E
[
hvHj ⊗ hvHj

]
.

Then one has

‖‖Zj‖‖ψ1
=

∥∥∥∥∥∥∥∥{(|〈h, bj〉|2 ajiajk − δik)hhH
}
i,k

∥∥∥∥∥∥∥∥
ψ1

≤
∥∥hhH

∥∥ · ∥∥∥∥∥∥|〈h, bj〉|2 ajaH
j − I

∥∥∥∥∥∥
ψ1

(i)
≤
∥∥∥max

{
|〈h, bj〉|2 · ‖aj‖22 , 1

}∥∥∥
ψ1

≤ |〈h, bj〉|2 ·
∥∥∥‖aj‖2∥∥∥2

ψ2

+ 1

(ii)
≤ CK logm,

where (i) is due to the fact that ‖hhH‖ = ‖h‖22 = 1; (ii) uses (F.1) and
∥∥‖bj‖2∥∥ψ2

.
√
K (cf. Vershynin

[2018, Theorem 3.1.1]). To compute the variance term E[ZH
j Zj ] and E[ZjZ

H
j ], we express the operation of

Zj on a matrix X as
Zj (X) = |〈h, bj〉|2 hhHXaja

H
j − ‖h‖

2
2 hh

HX,

and hence

ZH
j Zj (X) = |〈h, bj〉|4 ‖h‖22 ‖aj‖

2
2 hh

HXaja
H
j − 2 |〈h, bj〉|2 ‖h‖42 hh

HXaja
H
j + ‖h‖62 hh

HX.

Then one has

E
[
ZH
j Zj (X)

]
= 3 (K + 2) ‖h‖42 hh

HX − 2 ‖h‖62 hh
HX + ‖h‖62 hh

HX = (3K + 5) ‖h‖42 hh
HX.

Similarly, one can derive that

E
[
ZjZ

H
j (X)

]
= E

[
ZH
j Zj (X)

]
= (3K + 5) ‖h‖42 hh

HX,

thus indicating that

σZ := max


∥∥∥∥∥∥
m∑
j=1

E
[
ZH
j Zj

]∥∥∥∥∥∥
1/2

,

∥∥∥∥∥∥
m∑
j=1

E
[
ZjZ

H
j

]∥∥∥∥∥∥
1/2
 ≤

√
(3K + 5)m ‖h‖62.

By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2], one has∥∥∥∥∥∥
m∑
j=1

Zj

∥∥∥∥∥∥ . σZ
√

logm+BZ log

(
BZ
√
m

σZ

)
logm .

√
mK logm (D.5)

with high probability.
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Controlling β2. When it comes to the second term β2, we first set

Hj := hvHj ⊗ ujxH − E
[
hvHj ⊗ ujxH

]
,

which satisfies

‖Hj‖ =

∥∥∥∥{〈h, bj〉〈x,aj〉ajixkhbHj (IK − hhH
)}

i,k

∥∥∥∥
≤
∥∥〈h, bj〉 〈x,aj〉ajxH

∥∥ · ∥∥hbHj (IK − hhH
)∥∥

≤ |〈h, bj〉| · ‖〈x,aj〉aj‖ · ‖x‖2 · ‖h‖2 · ‖bj‖2 ·
∥∥IK − hhH

∥∥
≤ |〈h, bj〉| · |〈x,aj〉| · ‖aj‖2 · ‖x‖2 · ‖h‖2 · ‖bj‖2 ·

∥∥IK − hhH
∥∥

By employing ‖h‖2 = ‖x‖2 = 1, (F.1) and
∥∥‖aj‖2∥∥ψ2

=
∥∥‖bj‖2∥∥ψ2

.
√
K (cf. Vershynin [2018, Theorem

3.1.1]), we obtain

‖‖Hj‖‖ψ1
≤ CK logm.

Next, let us consider the operation of Hj and HH
j on X, which obeys

Hj (X) = 〈h, bj〉〈x,aj〉hbHj
(
IK − hhH

)
XxaH

j ,

HH
j (X) = 〈h, bj〉 〈x,aj〉

(
IK − hhH

)
bjh

HXajx
H.

Consequently, one can deduce that

HjH
H
j (X) = |〈h, bj〉|2 |〈x,aj〉|2 ‖x‖22 hb

H
j

(
IK − hhH

)
bjh

HXaja
H
j ,

and

HH
j Hj (X) = |〈h, bj〉|2 |〈x,aj〉|2 ‖aj‖22 ‖h‖

2
2

(
IK − hhH

)
bjb

H
j

(
IK − hhH

)
XxxH.

It follows that their expectations are

E
[
HjH

H
j (X)

]
=
[
(K + 2) ‖h‖22 − 3 ‖h‖42

]
hhHX

(
2xxH + ‖x‖22 IK

)
,

and

E
[
HH
j Hj (X)

]
= (K + 2) ‖h‖22 ‖x‖

2
2

(
IK − hhH

) (
2hhH + ‖h‖22 IK

) (
IK − hhH

)
XxxH

= (K + 2)
(
IK − hhH

)
XxxH.

Hence, we have

σZ := max


∥∥∥∥∥∥
m∑
j=1

E
[
HH
j Hj

]∥∥∥∥∥∥
1/2

,

∥∥∥∥∥∥
m∑
j=1

E
[
HjH

H
j

]∥∥∥∥∥∥
1/2
 ≤ √3mK.

By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2], one has∥∥∥∥∥∥
m∑
j=1

Hj

∥∥∥∥∥∥ . σZ
√

logm+BZ log

(
BZ
√
m

σZ

)
logm .

√
mK logm. (D.6)

Controlling β3. When being written in matrix form, one has ujxH⊗hvHj −E[ujx
H⊗hvHj ] is the conjugate

transpose of hvHj ⊗ ujxH − E[hvHj ⊗ ujxH], so that their norms are the same and (D.6) holds for ujxH ⊗
hvHj − E[ujx

H ⊗ hvHj ] as well.
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Controlling β4. For the last term β4, we denote

Wj := ujx
H ⊗ ujxH − E

[
ujx

H ⊗ ujxH
]
,

which satisfies

‖Wj‖ =

∥∥∥∥{xixk |〈x,aj〉|2 (IK − hhH
)
bjb

H
j

(
IK − hhH

)
− xixk ‖x‖22

(
IK − hhH

)}
i,k

∥∥∥∥
(i)
≤
∥∥∥∥{xixk |〈x,aj〉|2 (IK − hhH

)
bjb

H
j

(
IK − hhH

)}
i,k

∥∥∥∥+

∥∥∥∥{xixk ‖x‖22 (IK − hhH
)}

i,k

∥∥∥∥
≤
∥∥IK − hhH

∥∥2 ∥∥bjbHj ∥∥ |〈x,aj〉|2 ‖x‖22 +
∥∥IK − hhH

∥∥∥∥xxH
∥∥ ‖x‖22

(ii)
≤ ‖bj‖22 |〈x,aj〉|

2
+ 1.

Here, (i) is due to the triangle inequality, and (ii) applies ‖h‖2 = ‖x‖2 = 1 and the fact that ‖IK−hhH‖ ≤ 1.
It then follows that

‖‖Wj‖‖ψ1
≤ max

1≤j≤m
|〈x,aj〉|2 ·

∥∥‖bj‖2∥∥2ψ2
+ 1 ≤ CK logm,

where the second inequality uses (F.1) and
∥∥‖bj‖2∥∥ψ2

.
√
K (cf. Vershynin [2018, Theorem 3.1.1]). To

calculate the variance term, one observes that

Wj (X) = W H
j (X) = |〈h, bj〉|2 hhHXaja

H
j − ‖h‖

2
2 hh

HX,

which gives

W H
j Wj (X) = |〈h, bj〉|4 ‖h‖22 ‖aj‖

2
2 hh

HXaja
H
j − 2 |〈h, bj〉|2 ‖h‖42 hh

HXaja
H
j + ‖h‖62 hh

HX.

It is then seen that

E
[
W H

j Wj (X)
]

= 3 (K + 2) ‖h‖42 hh
HX − 2 ‖h‖62 hh

HX + ‖h‖62 hh
HX = (3K + 5)hhHX

and
E
[
W H

j Wj (X)
]

= E
[
WjW

H
j (X)

]
= (3K + 5)hhHX.

Therefore, one has

σZ := max


∥∥∥∥∥∥
m∑
j=1

E
[
W H

j Wj

]∥∥∥∥∥∥
1/2

,

∥∥∥∥∥∥
m∑
j=1

E
[
WjW

H
j

]∥∥∥∥∥∥
1/2
 ≤√(3K + 5)m.

By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2], one has∥∥∥∥∥∥
m∑
j=1

Wj

∥∥∥∥∥∥ . σZ
√

logm+BZ log

(
BZ
√
m

σZ

)
logm .

√
mK logm. (D.7)

Putting all this together. Plugging (D.5), (D.6) and (D.7) into (D.4) yields that with probability at
least 1−O(m−10),

‖PTA∗APT −mPT ‖ ≤ C
√
mK logm

holds for some large enough constant C > 0.
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E Proof of Theorem 5
The proof of this lower bound is rather standard, and hence we only provide a proof sketch here. First of
all, it suffices to consider the case where h,x ∈ RK . We assume that h? ∼ N (0, IK) and suppose that there
is an oracle informing us of h?, which reduces the problem to estimating x? from linear measurements

y = Ãx? + ξ,

where Ã := [ã1, ã2, · · · , ãm]H with ãj = bHj h
?aj . Denoting by Ãre and Ãim the real and the imaginary

part of Ã, respectively, the standard minimax risk results for linear regression (e.g. Candes and Plan [2011,
Lemma 3.11]) gives

inf
x̂

sup
x?∈CK

E
[
‖x̂− x?‖22

∣∣A] =
1

2
σ2
(
tr
[(
Ã>reÃre

)−1]
+ tr

[(
Ã>imÃim

)−1])
≥ Kσ2/max

{∥∥Ãre

∥∥2,∥∥Ãim

∥∥2} , (E.1)

where the infimum is over all estimator x̂. It is known from standard Gaussian concentration results that,
with high probability,

max
{∥∥Ãre

∥∥,∥∥Ãim

∥∥} ≤ { max
1≤j≤m

∣∣bHj h?∣∣} ‖A‖ .√K

m
logm ·

√
m �

√
K logm,

which together with (E.1) gives

inf
x̂

sup
x?∈CK

E
[
‖x̂− x?‖22

∣∣A] & σ2/ logm.

In turn, this oracle lower bound implies that, with high probability,

inf
Ẑ

sup
Z?∈M?

E
[∥∥Ẑ −Z?∥∥2

F
| A
]
& inf

x̂
sup
x?∈CK

E
[∥∥h?x̂H − h?x?H

∥∥2
F
| A
]
� inf

x̂
sup
x?∈CK

E
[
‖x̂− x?‖22 ‖h

?‖22 | A
]

& σ2K/ logm.

Similarly, for the second case, we assume that h? is a unit vector and there is an oracle informing us of h?.
Then we again relates the problem to estimating x? from linear measurements

y = Ǎx? + ξ,

where Ǎ := [ǎ1, ǎ2, · · · , ǎm]H with ǎj = bHj h
?aj . Denoting by Ǎre and Ǎim the real and the imaginary part

of Ǎ, respectively. Similar to (E.1), one has

inf
x̂

sup
x?∈CK

E
[
‖x̂− x?‖22

∣∣A,B] =
1

2
σ2
(
tr
[(
Ǎ>reǍre

)−1]
+ tr

[(
Ǎ>imǍim

)−1])
≥ Kσ2/max

{∥∥Ǎre

∥∥2,∥∥Ǎim

∥∥2} , (E.2)

by the standard minimax risk results for linear regression (e.g. Candes and Plan [2011, Lemma 3.11]). From
standard Gaussian concentration, we have, with high probability,

max
{∥∥Ǎre

∥∥,∥∥Ǎim

∥∥} ≤ { max
1≤j≤m

∣∣bHj h?∣∣} ‖A‖ .√logm ·
√
m �

√
m logm,

which taken collectively with (E.2) gives

inf
x̂

sup
x?∈CK

E
[
‖x̂− x?‖22

∣∣A,B] & σ2K

m logm
.
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Hence, this oracle lower bound implies that,

inf
Ẑ

sup
Z?∈M?

E
[∥∥Ẑ −Z?∥∥2

F
| A,B

]
& inf

x̂
sup
x?∈CK

E
[∥∥h?x̂H − h?x?H

∥∥2
F
| A,B

]
� inf

x̂
sup
x?∈CK

E
[
‖x̂− x?‖22 ‖h

?‖22 | A,B
]

&
σ2K

m logm
,

with high probability.

F Auxiliary lemmas
In this section, we collect several auxiliary lemmas that are useful for the proofs of our main theorems.

Lemma 38. Consider any fixed vector x independent of {al}1≤l≤m. Then with probability at least 1 −
O
(
m−100

)
, we have

max
1≤l≤m

∣∣aH
l x
∣∣ ≤ 20

√
logm ‖x‖2 . (F.1)

Additionally, there exists some constant C > 0 such that with probability at least 1−O
(
me−CK

)
, we have

max
1≤l≤m

‖al‖2 ≤ 10
√
K. (F.2)

Proof. The first result follows from standard Gaussian concentration inequalities as well as the union bound.
The second claim results from Vershynin [2018, Theorem 3.1.1].

Lemma 39. Fix an arbitrarily small constant ε > 0. Suppose that Assumption 1 holds andm ≥ Cµ2K log2m/ε2

for some sufficiently large constant C > 0. Then one has

‖PTA∗APT − PT ‖ ≤ ε,

with probability exceeding 1−O(m−10).

Proof. This has been established in Ahmed et al. [2013, Section 5.2].

Lemma 40. Under Assumption 2, one has∥∥∥∥∥∥ 1

m

m∑
j=1

yjbja
H
j − h?x?H

∥∥∥∥∥∥ .

√
mK log2m

m
+
σ
√
mK logm

m
,

holds with probability over 1−O(m−10), as long as m > CK log5m for some large enough constant C > 0.

Proof. See Appendix F.2.

F.1 Proof of Lemma 36
By the definition of A∗, we have

A∗ (ξ) =

m∑
j=1

ξjbja
H
j 1{|ξj |≤Cσ logm}︸ ︷︷ ︸

=:Xj

+

m∑
j=1

ξjbja
H
j 1{|ξj |>Cσ logm} .

Since

P
(

min
1≤j≤m

|ξj | > Cσ logm

)
≤

m∑
j=1

P (|ξj | > Cσ logm)
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≤ O
(
m−100

)
,

for sufficiently large constant C > 0, we have with probability exceeding 1−O(m−10), that

‖A∗ (ξ)‖ =

∥∥∥∥∥∥
m∑
j=1

Xj

∥∥∥∥∥∥ . (F.3)

To bound ‖
∑m
j=1Xj‖, we proceed by applying the matrix Bernstein inequality Koltchinskii et al. [2011,

Proposition 2]. One has

BZ :=
∥∥∥∥ξjbjaH

j 1{|ξj |≤Cσ logm}
∥∥∥∥

ψ1

=
∥∥∣∣ξj 1{|ξj |≤Cσ logm}

∣∣ ‖bj‖2 ‖aj‖2∥∥ψ1

(i)
≤ Cσ logm

∥∥‖bj‖2∥∥ψ2

∥∥‖aj‖2∥∥ψ2

(ii)
. CσK logm,

where (i) uses Vershynin [2018, Lemma 2.7.7] and (ii) is due to the facts that ‖‖aj‖2‖ψ2 .
√
K and

‖‖bj‖2‖ψ2
.
√
K (cf. Vershynin [2018, Theorem 3.1.1]). Next, we turn to control the variance term. One

has ∥∥∥∥∥∥
m∑
j=1

E
[
XjX

H
j

]∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

E
[
|ξj |2 bjaH

j ajb
H
j 1{|ξj |≤Cσ logm}

]∥∥∥∥∥∥
=

∥∥∥∥∥∥
m∑
j=1

E
[
|ξj |2 1{|ξj |≤Cσ logm}

]
E
[
bjb

H
j

]
E
[
aH
j aj

]∥∥∥∥∥∥
≤ σ2mK.

Since {aj}mj=1 have the same distribution as {bj}mj=1, ‖
∑m
j=1 E[XH

j Xj ]‖ can be controlled in the same way
as above. Then, we have

σZ := max


∥∥∥∥∥∥
m∑
j=1

E
[
XjX

H
j

]∥∥∥∥∥∥
1/2

,

∥∥∥∥∥∥
m∑
j=1

E
[
XH
j Xj

]∥∥∥∥∥∥
1/2
 ≤ σ√mK.

Now we are ready to invoke Koltchinskii et al. [2011, Proposition 2] to derive that with probability over
1−O(m−20), there holds∥∥∥∥∥∥

m∑
j=1

Xj

∥∥∥∥∥∥ . σZ
√

logm+BZ log

(
BZ
√
m

σZ

)
logm . σ

√
mK logm, (F.4)

where the last inequality holds as long as m� K log5m. Taking (F.4) collectively with (F.3), one has

‖A∗ (ξ)‖ =

∥∥∥∥∥∥
m∑
j=1

Xj

∥∥∥∥∥∥ . σ
√
mK logm,

holds with probability exceeding 1−O(m−10).

F.2 Proof of Lemma 40
Denote by M = 1

m

∑m
j=1 yjbja

H
j . Then we have

‖M − E [M ]‖ =

∥∥∥∥∥∥ 1

m

m∑
j=1

yjbja
H
j − h?x?H

∥∥∥∥∥∥
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≤ 1

m

∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

?x?Haja
H
j −mh?x?H

∥∥∥∥∥∥+
1

m
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m∑
j=1

ξjbja
H
j

∥∥∥∥∥∥ . (F.5)

The second term can be bounded by Lemma 36. We are left to control the first term.
In view of (F.2), one has

m∑
j=1

bjb
H
j h

?x?Haja
H
j −mh?x?H =

m∑
j=1

bjb
H
j h

?x?Haja
H
j 1

{
|aH
jx

?bHjh
?|≤(20

√
logm)

2
}−mh?x?H, (F.6)

holds with probability over 1−O(m−100).

Concentration. For any fixed unit vectors u and v, define

Zj := uHbjb
H
j h

?x?Haja
H
j v 1

{
|aH
jx

?bHjh
?|≤(20

√
logm)

2
} .

Then we invoke the Bernstein inequality Vershynin [2018, Theorem 2.8.2] to control ‖
∑m
j=1(Zj − E[Zj ])‖.

We have ∥∥∥Zj − E [Zj ]
∥∥∥
ψ1

≤ C ‖Zj‖ψ1
≤ 400C logm

∥∥uHbj
∥∥
ψ2

∥∥aH
j v
∥∥
ψ2

. logm.

Here, we have used ‖X − E[X]‖ψ1 ≤ C ‖X‖ψ1
(cf. Vershynin [2018, Section 2.7]). Then the Bernstein

inequality Vershynin [2018, Theorem 2.8.2] allows us to derive that

P

∣∣∣∣∣∣
m∑
j=1

(Zj − E [Zj ])

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−cmin

(
t2

m log2m
,

t

logm

))
.

Letting t = Ct
√
mK logm for some large enough constant Ct > 0, we obtain that∣∣∣∣∣∣

m∑
j=1

(Xj − E [Xj ])

∣∣∣∣∣∣ ≤ Ct√mK logm, (F.7)

holds with probability exceeding 1− 2 exp(−cC2
tK).

Union bound. Next, we define N0 an ε-net of the unit sphere SK−1. In view of Vershynin [2018, Corollary
4.2.13], we have

|N0| ≤
(

1 +
2

ε

)2K

.

Taking this collectively with the union bound yields that (F.7) holds uniformly for any x ∈ Nx and u,
v ∈ N0 with probability over

1−
(

1 +
2

ε

)4K

· 2 exp
(
−cC2

tK
)
≥ 1− 2 exp (−CK logm) .

Approximation. Then, for any u, v ∈ SK−1, one can choose u0 ∈ N0 and v0 ∈ N0 satisfying max{‖u−
u0‖2, ‖v − v0‖2} ≤ ε2. Let

g (u,v) :=

m∑
j=1

[
uHbjb

H
j h

?x?Haja
H
j v 1

{
|aH
jx

?bHjh
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logm)

2
}−muHh?x?Hv

]
.

Set ε = 1/4. By triangle inequality, one has

|g (u,v)− g (u0,v0)| ≤ |g (u,v)− g (u0,v)|+ |g (u0,v)− g (u0,v0)|
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≤ 2ε
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Considering g(u0,v0), let
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where we use (F.7) and∣∣∣∣E [uHbjb
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Hence we have
|g (u0,v0)| ≤ 2Ct

√
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Putting all this together. It then follows that
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Taking maximum over u and v on the left side yields that
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Rearranging terms and recalling ε = 1/4 give rise to∥∥∥∥∥∥
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Taking (F.6) with (F.8) collectively yields that∥∥∥∥∥∥
m∑
j=1

bjb
H
j h

?x?Haja
H
j −mh?x?H

∥∥∥∥∥∥ ≤ 4Ct
√
mK logm, (F.9)

holds with probability at least 1−O(exp(−CK logm) +m−100). Plugging (F.9) and (D.3) into (F.5) gives
the desired conclusion.
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